Ytterbium(III) bromide

Last updated
Ytterbium(III) bromide
YBr3structure.jpg
Names
Other names
ytterbium tribromide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.033.940 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 237-350-0
PubChem CID
  • InChI=1S/3BrH.Yb/h3*1H;/q;;;+3/p-3 Yes check.svgY
    Key: QNLXXQBCQYDKHD-UHFFFAOYSA-K Yes check.svgY
  • InChI=1/3BrH.Yb/h3*1H;/q;;;+3/p-3
    Key: QNLXXQBCQYDKHD-DFZHHIFOAH
  • Br[Yb](Br)Br
Properties
YbBr3
Molar mass 412.77 g/mol
Appearancewhite crystalline
Melting point 677 °C (1,251 °F; 950 K) [1]
Boiling point 1,800 °C (3,270 °F; 2,070 K) [1]
Structure
Trigonal, hR24
R-3, No. 148
Hazards
GHS labelling:
GHS-pictogram-exclam.svg
Warning
H315, H319, H335
P261, P264, P271, P280, P302+P352, P304+P340, P305+P351+P338, P312, P332+P313, P337+P313, P362, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth (blue): no hazard codeFlammability (red): no hazard codeInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Ytterbium(III) bromide (Yb Br3) is an inorganic chemical compound.

Refer to the adjacent table for the main properties of Ytterbium(III) bromide.

Preparation

Dissolving ytterbium oxide into 40% hydrobromic acid forms YbBr3·6H2O crystals. After mixing the hydrate with ammonium bromide and heating it in a vacuum, anhydrous YbBr3 can be obtained. [2]

Yb2O3 + 6 HBr → 2 YbBr3 + 3 H2O

Ytterbium(III) bromide can also be prepared by directly heating ytterbium oxide and ammonium bromide. [3]

Related Research Articles

<span class="mw-page-title-main">Erbium</span> Chemical element, symbol Er and atomic number 68

Erbium is a chemical element; it has symbol Er and atomic number 68. A silvery-white solid metal when artificially isolated, natural erbium is always found in chemical combination with other elements. It is a lanthanide, a rare-earth element, originally found in the gadolinite mine in Ytterby, Sweden, which is the source of the element's name.

<span class="mw-page-title-main">Ytterbium</span> Chemical element, symbol Yb and atomic number 70

Ytterbium is a chemical element; it has symbol Yb and atomic number 70. It is a metal, the fourteenth and penultimate element in the lanthanide series, which is the basis of the relative stability of its +2 oxidation state. Like the other lanthanides, its most common oxidation state is +3, as in its oxide, halides, and other compounds. In aqueous solution, like compounds of other late lanthanides, soluble ytterbium compounds form complexes with nine water molecules. Because of its closed-shell electron configuration, its density, melting point and boiling point are much lower than those of most other lanthanides.

Neodymium(III) chloride or neodymium trichloride is a chemical compound of neodymium and chlorine with the formula NdCl3. This anhydrous compound is a mauve-colored solid that rapidly absorbs water on exposure to air to form a purple-colored hexahydrate, NdCl3·6H2O. Neodymium(III) chloride is produced from minerals monazite and bastnäsite using a complex multistage extraction process. The chloride has several important applications as an intermediate chemical for production of neodymium metal and neodymium-based lasers and optical fibers. Other applications include a catalyst in organic synthesis and in decomposition of waste water contamination, corrosion protection of aluminium and its alloys, and fluorescent labeling of organic molecules (DNA).

<span class="mw-page-title-main">Yttrium(III) bromide</span> Chemical compound

Yttrium(III) bromide is an inorganic compound with the chemical formula YBr3. It is a white solid. Anhydrous yttrium(III) bromide can be produced by reacting yttrium oxide or yttrium(III) bromide hydrate and ammonium bromide. The reaction proceeds via the intermediate (NH4)3YBr6. Another method is to react yttrium carbide (YC2) and elemental bromine. Yttrium(III) bromide can be reduced by yttrium metal to YBr or Y2Br3. It can react with osmium to produce Y4Br4Os.

<span class="mw-page-title-main">Ytterbium(III) chloride</span> Chemical compound

Ytterbium(III) chloride (YbCl3) is an inorganic chemical compound. It reacts with NiCl2 to form a very effective catalyst for the reductive dehalogenation of aryl halides. It is poisonous if injected, and mildly toxic by ingestion. It is an experimental teratogen, known to irritate the skin and eyes.

<span class="mw-page-title-main">Terbium(III) bromide</span> Chemical compound

Terbium(III) bromide (TbBr3) is a crystalline chemical compound.

Scandium bromide, or ScBr3, is a trihalide, hygroscopic, water-soluble chemical compound of scandium and bromine.

<span class="mw-page-title-main">Neodymium(III) bromide</span> Chemical compound

Neodymium(III) bromide is an inorganic salt of bromine and neodymium the formula NdBr3. The anhydrous compound is an off-white to pale green solid at room temperature, with an orthorhombic PuBr3-type crystal structure. The material is hygroscopic and forms a hexahydrate in water (NdBr3· 6H2O), similar to the related neodymium(III) chloride.

Samarium(III) bromide is a crystalline compound of one samarium and three bromine atoms with the chemical formula of SmBr3. Samarium(III) bromide is a dark brown powder at room temperature. The compound has a crystal structure isotypic to that of plutonium(III) bromide.

Curium(III) bromide is the bromide salt of curium. It has an orthorhombic crystal structure.

Lanthanide trichlorides are a family of inorganic compound with the formula LnCl3, where Ln stands for a lanthanide metal. The trichlorides are standard reagents in applied and academic chemistry of the lanthanides. They exist as anhydrous solids and as hydrates.

<span class="mw-page-title-main">Europium compounds</span> Compounds with at least one europium atom

Europium compounds are compounds formed by the lanthanide metal europium (Eu). In these compounds, europium generally exhibits the +3 oxidation state, such as EuCl3, Eu(NO3)3 and Eu(CH3COO)3. Compounds with europium in the +2 oxidation state are also known. The +2 ion of europium is the most stable divalent ion of lanthanide metals in aqueous solution. Many europium compounds fluoresce under ultraviolet light due to the excitation of electrons to higher energy levels. Lipophilic europium complexes often feature acetylacetonate-like ligands, e.g., Eufod.

<span class="mw-page-title-main">Dysprosium(III) bromide</span> Chemical compound

Dysprosium(III) bromide is an inorganic compound of bromine and dysprosium, with the chemical formula of DyBr3.

<span class="mw-page-title-main">Promethium(III) bromide</span> Chemical compound

Promethium(III) bromide is an inorganic compound, with the chemical formula of PmBr3. It is radioactive salt. It is a crystal of the hexagonal crystal system, with the space group of P63/mc (No. 176).

Erbium compounds are compounds containing the element erbium (Er). These compounds are usually dominated by erbium in the +3 oxidation state, although the +2, +1 and 0 oxidation states have also been reported.

Lutetium compounds are compounds formed by the lanthanide metal lutetium (Lu). In these compounds, lutetium generally exhibits the +3 oxidation state, such as LuCl3, Lu2O3 and Lu2(SO4)3. Aqueous solutions of most lutetium salts are colorless and form white crystalline solids upon drying, with the common exception of the iodide. The soluble salts, such as nitrate, sulfate and acetate form hydrates upon crystallization. The oxide, hydroxide, fluoride, carbonate, phosphate and oxalate are insoluble in water.

Actinium compounds are compounds containing the element actinium (Ac). Due to actinium's intense radioactivity, only a limited number of actinium compounds are known. These include: AcF3, AcCl3, AcBr3, AcOF, AcOCl, AcOBr, Ac2S3, Ac2O3, AcPO4 and Ac(NO3)3. Except for AcPO4, they are all similar to the corresponding lanthanum compounds. They all contain actinium in the oxidation state +3. In particular, the lattice constants of the analogous lanthanum and actinium compounds differ by only a few percent.

<span class="mw-page-title-main">Ytterbium(II) iodide</span> Chemical compound

Ytterbium(II) iodide is an iodide of ytterbium, with the chemical formula of YbI2. It is a yellow solid.

<span class="mw-page-title-main">Ytterbium(III) iodide</span> Chemical compound

Ytterbium(III) iodide is one of ytterbium's iodides, with the chemical formula of YbI3.

References

  1. 1 2 Walter Benenson; John W. Harris; Horst Stöcker (2002). Handbook of Physics. Springer. p. 781. ISBN   0-387-95269-1.
  2. 林平娣, 吴国庆. 无水三溴化钐和三溴化镱的制备 Archived November 12, 2017, at the Wayback Machine [J]. 化学试剂, 1991(1):13-14.
  3. Gerd Meyer, Siegfried Dötsch, Thomas Staffel (1987). "The ammonium-bromide route to anhydrous rare earth bromides MBr3". Journal of the Less Common Metals. 127: 155–160. doi:10.1016/0022-5088(87)90372-9 . Retrieved 2020-05-29.{{cite journal}}: CS1 maint: multiple names: authors list (link)