Ytterbium(II) iodide

Last updated
Ytterbium(II) iodide
Kristallstruktur Cadmiumiodid.png
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.214.149 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 687-891-5
PubChem CID
  • InChI=1S/2HI.Yb/h2*1H;/q;;+2/p-2
    Key: SJLISRWUWZVXNZ-UHFFFAOYSA-L
  • [I-].[I-].[Yb+2]
Properties
I2Yb
Molar mass 426.854 g·mol−1
Appearanceyellow solid [1]
Melting point 780 °C (1,440 °F; 1,050 K) [1] (decomposes)
Structure
Trigonal
P3m1 (No. 164)
a = 448 pm, c = 696 pm [2]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Ytterbium(II) iodide is an iodide of ytterbium, with the chemical formula of YbI2. It is a yellow solid.

Contents

Preparation

Ytterbium(II) iodide can be prepared by heating ytterbium(III) iodide: [1]

It can also be prepared by reacting metallic ytterbium with 1,2-diiodoethane in tetrahydrofuran: [3]

Although the reaction takes place at room temperature, due to the sensitivity of the reagents it is necessary to work anhydrous and under inert gas. Otherwise, if oxygen is present, rapid oxidation to ytterbium(III) takes place. This can be visually recognized by the color change from green to yellow solution.

Properties and uses

Ytterbium(II) iodide is a yellow solid that is very sensitive to air and moisture and is rapidly oxidized to ytterbium(III). It reacts with water to produce hydrogen gas and basic iodides, and reacts violently with acids. [1] Ytterbium(II) iodide sinters at 0.01 Torr from about 780 °C and gives a viscous melt at about 920 °C. It begins to disproportionate into ytterbium and ytterbium(III) iodide. At around 800 °C, a yellow sublimate of ytterbium(II) iodide is observed on the glass walls; this partly obscures the disproportionation. The melting point can therefore only be determined imprecisely. [1] [4]

Like samarium(II) iodide (SmI2), ytterbium(II) iodide is a reagent used in organic chemical reactions. [3]

Related Research Articles

The lanthanide or lanthanoid series of chemical elements comprises the 14 metallic chemical elements with atomic numbers 57–70, from lanthanum through ytterbium. Lutetium is also sometimes considered a lanthanide, despite being a d-block element and a transition metal. These elements are often collectively known as the rare-earth elements or rare-earth metals.

<span class="mw-page-title-main">Ytterbium</span> Chemical element, symbol Yb and atomic number 70

Ytterbium is a chemical element; it has symbol Yb and atomic number 70. It is a metal, the fourteenth and penultimate element in the lanthanide series, which is the basis of the relative stability of its +2 oxidation state. Like the other lanthanides, its most common oxidation state is +3, as in its oxide, halides, and other compounds. In aqueous solution, like compounds of other late lanthanides, soluble ytterbium compounds form complexes with nine water molecules. Because of its closed-shell electron configuration, its density, melting point and boiling point are much lower than those of most other lanthanides.

<span class="mw-page-title-main">Samarium(II) iodide</span> Chemical compound

Samarium(II) iodide is an inorganic compound with the formula SmI2. When employed as a solution for organic synthesis, it is known as Kagan's reagent. SmI2 is a green solid and solutions are green as well. It is a strong one-electron reducing agent that is used in organic synthesis.

Henri Boris Kagan is currently an emeritus professor at the Université Paris-Sud in France. He is widely recognized as a pioneer in the field of asymmetric catalysis. His discoveries have had far-reaching impacts on the pharmaceutical industry.

<span class="mw-page-title-main">Reductions with samarium(II) iodide</span>

Reductions with samarium(II) iodide involve the conversion of various classes of organic compounds into reduced products through the action of samarium(II) iodide, a mild one-electron reducing agent.

<span class="mw-page-title-main">Bibenzyl</span> Chemical compound

Bibenzyl is the organic compound with the formula (C6H5CH2)2. It can be viewed as a derivative of ethane in which one phenyl group is bonded to each carbon atom. It is a colorless solid.

<span class="mw-page-title-main">1,2-Diiodoethane</span> Chemical compound

1,2-Diiodoethane is an organoiodine compound.

<span class="mw-page-title-main">Vanadium(II) iodide</span> Chemical compound

Vanadium(II) iodide is the inorganic compound with the formula VI2. It is a black micaceous solid. It adopts the cadmium iodide structure, featuring octahedral V(II) centers. The hexahydrate [V(H2O)6]I2, an aquo complex, is also known. It forms red-violet crystals. The hexahydrate dehydrates under vacuum to give a red-brown tetrahydrate with the formula V(H2O)4I2.

<span class="mw-page-title-main">Europium(II) chloride</span> Chemical compound

Europium(II) chloride is an inorganic compound with a chemical formula EuCl2. When it is irradiated by ultraviolet light, it has bright blue fluorescence.

<span class="mw-page-title-main">Neodymium(II) iodide</span> Chemical compound

Neodymium(II) iodide or neodymium diiodide is an inorganic salt of iodine and neodymium the formula NdI2. Neodymium uses the +2 oxidation state in the compound.

An iodide nitride is a mixed anion compound containing both iodide (I) and nitride ions (N3−). Another name is metalloiodonitrides. They are a subclass of halide nitrides or pnictide halides. Some different kinds include ionic alkali or alkaline earth salts, small clusters where metal atoms surround a nitrogen atom, layered group 4 element 2-dimensional structures, and transition metal nitrido complexes counter-balanced with iodide ions. There is also a family with rare earth elements and nitrogen and sulfur in a cluster.

Carbide chlorides are mixed anion compounds containing chloride anions and anions consisting entirely of carbon. In these compounds there is no bond between chlorine and carbon. But there is a bond between a metal and carbon. Many of these compounds are cluster compounds, in which metal atoms encase a carbon core, with chlorine atoms surrounding the cluster. The chlorine may be shared between clusters to form polymers or layers. Most carbide chloride compounds contain rare earth elements. Some are known from group 4 elements. The hexatungsten carbon cluster can be oxidised and reduced, and so have different numbers of chlorine atoms included.

<span class="mw-page-title-main">Praseodymium(III) iodide</span> Chemical compound

Praseodymium(III) iodide is an inorganic salt, consisting of the rare-earth metal praseodymium and iodine, with the chemical formula PrI3. It forms green crystals. It is soluble in water.

<span class="mw-page-title-main">Europium compounds</span> Compounds with at least one europium atom

Europium compounds are compounds formed by the lanthanide metal europium (Eu). In these compounds, europium generally exhibits the +3 oxidation state, such as EuCl3, Eu(NO3)3 and Eu(CH3COO)3. Compounds with europium in the +2 oxidation state are also known. The +2 ion of europium is the most stable divalent ion of lanthanide metals in aqueous solution. Many europium compounds fluoresce under ultraviolet light due to the excitation of electrons to higher energy levels. Lipophilic europium complexes often feature acetylacetonate-like ligands, e.g., Eufod.

<span class="mw-page-title-main">Gadolinium(III) iodide</span> Chemical compound

Gadolinium(III) iodide is an iodide of gadolinium, with the chemical formula of GdI3. It is a yellow, highly hygroscopic solid with a bismuth(III) iodide-type crystal structure. In air, it quickly absorbs moisture and forms hydrates. The corresponding oxide iodide is also readily formed at elevated temperature.

<span class="mw-page-title-main">Gadolinium diiodide</span> Chemical compound

Gadolinium diiodide is an inorganic compound, with the chemical formula of GdI2. It is an electride, with the ionic formula of Gd3+(I)2e, and therefore not a true gadolinium(II) compound. It is ferromagnetic at 276 K with a saturation magnetization of 7.3 B; it exhibits a large negative magnetoresistance (~70%) at 7 T near room temperature. It can be obtained by reacting gadolinium and gadolinium(III) iodide at a high temperature:

<span class="mw-page-title-main">Holmium(III) iodide</span> Chemical compound

Holmium(III) iodide is an iodide of holmium, with the chemical formula of HoI3. It is used as a component of metal halide lamps.

Ytterbium compounds are chemical compounds that contain the element ytterbium (Yb). The chemical behavior of ytterbium is similar to that of the rest of the lanthanides. Most ytterbium compounds are found in the +3 oxidation state, and its salts in this oxidation state are nearly colorless. Like europium, samarium, and thulium, the trihalides of ytterbium can be reduced to the dihalides by hydrogen, zinc dust, or by the addition of metallic ytterbium. The +2 oxidation state occurs only in solid compounds and reacts in some ways similarly to the alkaline earth metal compounds; for example, ytterbium(II) oxide (YbO) shows the same structure as calcium oxide (CaO).

<span class="mw-page-title-main">Ytterbium(III) iodide</span> Chemical compound

Ytterbium(III) iodide is one of ytterbium's iodides, with the chemical formula of YbI3.

<span class="mw-page-title-main">Thulium(II) iodide</span> Chemical compound

Thulium diiodide is an inorganic compound with the chemical formula TmI2.

References

  1. 1 2 3 4 5 G. Jantsch; N. Skalla; H. Jawurek (1931-11-10). "Zur Kenntnis der Halogenide der seltenen Erden. V. Über die Halogenide des Ytterbiums". Zeitschrift für anorganische und allgemeine Chemie. 201 (1): 207–220. doi:10.1002/zaac.19312010119.
  2. Walter Döll; Wilhelm Klemm (1939-05-05). "Messungen an zwei- und vierwertigen Verbindungen der seltenen Erden. VII. Über die Struktur einiger Dihalogenide". Zeitschrift für anorganische und allgemeine Chemie. 241 (2–3): 239–258. doi:10.1002/zaac.19392410211.
  3. 1 2 Pierre-Marie Girard; Jean Louis Namy; Henri B. Kagan (April 1980). "Divalent lanthanide derivatives in organic synthesis. 1. Mild preparation of samarium iodide and ytterbium iodide and their use as reducing or coupling agents". Journal of the American Chemical Society. 102 (8): 2693–2698. doi:10.1021/ja00528a029. ISSN   0002-7863.
  4. Gmelins Handbuch der anorganischen Chemie , System Nr. 39, Band C 6, S. 199–200.

Further reading