Ytterbium(II) sulfide

Last updated
Ytterbium(II) sulfide
Names
Other names
Ytterbium monosulfide, ytterbium(II) sulfide
Identifiers
3D model (JSmol)
ChemSpider
  • InChI=1S/S.Yb
    Key: QHGZBASAVJOMNS-UHFFFAOYSA-N
  • [S].[Yb]
Properties
SYb
Molar mass 205.11 g·mol−1
Appearanceblack crystals
Density 6.68 g/cm3
Melting point 2,038 °C (3,700 °F; 2,311 K)
Structure
cubic
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Ytterbium(II) sulfide is a binary inorganic compound of ytterbium and sulfur with the chemical formula YbS. [1] [2]

Contents

Synthesis

Synthesis of ytterbium(II) sulfide can be via a reaction of pure substances in an inert atmosphere: [3]

Yb + S → YbS

An alternative synthesis is by comproportionation of ytterbium(III) sulfide and ytterbium metal in vacuum at 1000–1100 °C:

Yb2S3 + Yb → 3YbS

Physical properties

Ytterbium(II) sulfide forms black crystals of cubic symmetry, space group Fm3m, cell parameter a = 0.5658 nm, Z = 4. [4]

Ytterbium(II) sulfide demonstrates semiconductor behavior. [5]

Related Research Articles

<span class="mw-page-title-main">Holmium</span> Chemical element, symbol Ho and atomic number 67

Holmium is a chemical element; it has symbol Ho and atomic number 67. It is a rare-earth element and the eleventh member of the lanthanide series. It is a relatively soft, silvery, fairly corrosion-resistant and malleable metal. Like many other lanthanides, holmium is too reactive to be found in native form, as pure holmium slowly forms a yellowish oxide coating when exposed to air. When isolated, holmium is relatively stable in dry air at room temperature. However, it reacts with water and corrodes readily, and also burns in air when heated.

<span class="mw-page-title-main">Lutetium</span> Chemical element, symbol Lu and atomic number 71

Lutetium is a chemical element; it has symbol Lu and atomic number 71. It is a silvery white metal, which resists corrosion in dry air, but not in moist air. Lutetium is the last element in the lanthanide series, and it is traditionally counted among the rare earth elements; it can also be classified as the first element of the 6th-period transition metals.

The lanthanide or lanthanoid series of chemical elements comprises the 14 metallic chemical elements with atomic numbers 57–70, from lanthanum through ytterbium. Lutetium is also sometimes considered a lanthanide, despite being a d-block element and a transition metal. These elements are often collectively known as the rare-earth elements or rare-earth metals.

<span class="mw-page-title-main">Ytterbium</span> Chemical element, symbol Yb and atomic number 70

Ytterbium is a chemical element; it has symbol Yb and atomic number 70. It is a metal, the fourteenth and penultimate element in the lanthanide series, which is the basis of the relative stability of its +2 oxidation state. Like the other lanthanides, its most common oxidation state is +3, as in its oxide, halides, and other compounds. In aqueous solution, like compounds of other late lanthanides, soluble ytterbium compounds form complexes with nine water molecules. Because of its closed-shell electron configuration, its density, melting point and boiling point are much lower than those of most other lanthanides.

<span class="mw-page-title-main">Cubic crystal system</span> Crystallographic system where the unit cell is in the shape of a cube

In crystallography, the cubiccrystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals.

<span class="mw-page-title-main">Cadmium sulfide</span> Chemical compound

Cadmium sulfide is the inorganic compound with the formula CdS. Cadmium sulfide is a yellow salt. It occurs in nature with two different crystal structures as the rare minerals greenockite and hawleyite, but is more prevalent as an impurity substituent in the similarly structured zinc ores sphalerite and wurtzite, which are the major economic sources of cadmium. As a compound that is easy to isolate and purify, it is the principal source of cadmium for all commercial applications. Its vivid yellow color led to its adoption as a pigment for the yellow paint "cadmium yellow" in the 18th century.

<span class="mw-page-title-main">Ytterbium(III) oxide</span> Chemical compound

Ytterbium(III) oxide is the chemical compound with the formula Yb2O3. It is one of the more commonly encountered compounds of ytterbium. It occurs naturally in trace amounts in the mineral gadolinite. It was first isolated from this in 1878 by Jean Charles Galissard de Marignac.

<span class="mw-page-title-main">Ytterbium(III) chloride</span> Chemical compound

Ytterbium(III) chloride (YbCl3) is an inorganic chemical compound. It reacts with NiCl2 to form a very effective catalyst for the reductive dehalogenation of aryl halides. It is poisonous if injected, and mildly toxic by ingestion. It is an experimental teratogen, known to irritate the skin and eyes.

Tin(II) sulfide is a chemical compound of tin and sulfur. The chemical formula is SnS. Its natural occurrence concerns herzenbergite (α-SnS), a rare mineral. At elevated temperatures above 905 K, SnS undergoes a second order phase transition to β-SnS (space group: Cmcm, No. 63). In recent years, it has become evident that a new polymorph of SnS exists based upon the cubic crystal system, known as π-SnS (space group: P213, No. 198).

Iron(II,III) sulfide is a blue-black (sometimes pinkish) chemical compound of iron and sulfur with formula Fe3S4 or FeS·Fe2S3, which is much similar to iron(II,III) oxide. It occurs naturally as the sulfide mineral greigite and is magnetic. It is a bio-mineral produced by and found in magnetotactic bacteria. It is a mixed valence compound, featuring both Fe2+ and Fe3+ centers, in 1:2 ratio.

<span class="mw-page-title-main">Europium(II) sulfide</span> Chemical compound

Europium (II) sulfide is the inorganic compound with the chemical formula EuS. It is a black, air-stable powder. Europium possesses an oxidation state of +II in europium sulfide, whereas the lanthanides exhibit a typical oxidation state of +III. Its Curie temperature (Tc) is 16.6 K. Below this temperature EuS behaves like a ferromagnetic compound, and above it exhibits simple paramagnetic properties. EuS is stable up to 500 °C in air, when it begins to show signs of oxidation. In an inert environment it decomposes at 1470 °C.

<span class="mw-page-title-main">Jean-Marie Tarascon</span> French chemist

Jean-Marie Tarascon FRSC is Professor of Chemistry at the Collège de France in Paris and Director of the French Research Network on Electrochemical Energy Storage (RS2E).

Tellurium compounds are compounds containing the element tellurium (Te). Tellurium belongs to the chalcogen family of elements on the periodic table, which also includes oxygen, sulfur, selenium and polonium: Tellurium and selenium compounds are similar. Tellurium exhibits the oxidation states −2, +2, +4 and +6, with +4 being most common.

Ytterbium(III) phosphide is an inorganic compound of ytterbium and phosphorus with the chemical formula YbP. This is one of the phosphides of ytterbium.

<span class="mw-page-title-main">Ytterbium(III) acetate</span> Chemical compound

Ytterbium(III) acetate is an inorganic salt of ytterbium and acetic acid, with a chemical formula of Yb(CH3COO)3. It has colorless crystals that are soluble in water and can form hydrates.

<span class="mw-page-title-main">Europium compounds</span> Compounds with at least one europium atom

Europium compounds are compounds formed by the lanthanide metal europium (Eu). In these compounds, europium generally exhibits the +3 oxidation state, such as EuCl3, Eu(NO3)3 and Eu(CH3COO)3. Compounds with europium in the +2 oxidation state are also known. The +2 ion of europium is the most stable divalent ion of lanthanide metals in aqueous solution. Many europium compounds fluoresce under ultraviolet light due to the excitation of electrons to higher energy levels. Lipophilic europium complexes often feature acetylacetonate-like ligands, e.g., Eufod.

Ytterbium compounds are chemical compounds that contain the element ytterbium (Yb). The chemical behavior of ytterbium is similar to that of the rest of the lanthanides. Most ytterbium compounds are found in the +3 oxidation state, and its salts in this oxidation state are nearly colorless. Like europium, samarium, and thulium, the trihalides of ytterbium can be reduced to the dihalides by hydrogen, zinc dust, or by the addition of metallic ytterbium. The +2 oxidation state occurs only in solid compounds and reacts in some ways similarly to the alkaline earth metal compounds; for example, ytterbium(II) oxide (YbO) shows the same structure as calcium oxide (CaO).

<span class="mw-page-title-main">Ytterbium(II) iodide</span> Chemical compound

Ytterbium(II) iodide is an iodide of ytterbium, with the chemical formula of YbI2. It is a yellow solid.

Cerium monosulfide is a binary inorganic compound of cerium and sulfur with the chemical formula CeS. This is the simplest of cerium sulfides.

<span class="mw-page-title-main">Ytterbium(II) fluoride</span> Chemical compound

Ytterbium(II) fluoride is a binary inorganic compound of ytterbium and fluorine with the chemical formula YbF2.

References

  1. O'Bannon, Loran (6 December 2012). Dictionary of Ceramic Science and Engineering. Springer Science & Business Media. p. 280. ISBN   978-1-4613-2655-7 . Retrieved 4 April 2023.
  2. Derz, Friedrich W. (18 May 2020). H-Z. Walter de Gruyter GmbH & Co KG. p. 1971. ISBN   978-3-11-232209-3 . Retrieved 4 April 2023.
  3. Kudryashov, M. A.; Logunov, A. A.; Mochalov, L. A. (2001). "Direct one-stage plasma-chemical synthesis of chalcogenide films doped with ytterbium". Journal of Physics: Conference Series . 1967: 012005. doi: 10.1088/1742-6596/1967/1/012005 .
  4. "mp-1820: YbS (Cubic, Fm-3m, 225)". Materials Project . Retrieved 4 April 2023.
  5. Chen, Yuqi; Li, Liang; Hirai, Shinji (1 April 2019). "Fabrication, sintering, heat capacity, magnetic and magnetroresistivity properties of ytterbium sulfides". Journal of Magnetism and Magnetic Materials . 476: 289–296. Bibcode:2019JMMM..476..289C. doi:10.1016/j.jmmm.2018.12.100. ISSN   0304-8853. S2CID   127540609 . Retrieved 4 April 2023.