Tungsten disulfide

Last updated
Tungsten disulfide
Molybdenite-3D-balls.png
WS2 on sapphire.jpg
Left: WS2 film on sapphire. Right: dark exfoliated WS2 film floating on water
Names
IUPAC names
Tungsten sulfur
Bis(sulfanylidene)tungsten
Systematic IUPAC name
Dithioxotungsten
Other names
Tungsten(IV) sulfide
Tungstenite
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.032.027 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 235-243-3
PubChem CID
  • InChI=1S/2S.W Yes check.svgY
    Key: ITRNXVSDJBHYNJ-UHFFFAOYSA-N Yes check.svgY
  • InChI=1S/2S.W
    Key: ITRNXVSDJBHYNJ-UHFFFAOYSA-N
  • S=[W]=S
Properties
WS2
Molar mass 247.98 g/mol
AppearanceBlue-gray powder [1]
Density 7.5 g/cm3, solid [1]
Melting point 1,250 °C (2,280 °F; 1,520 K) decomposes [1]
Slightly soluble
Band gap ~1.35 eV (optical, indirect, bulk) [2] [3]
~2.05 eV (optical, direct, monolayer) [4]
+5850·10−6 cm3/mol [5]
Structure
Molybdenite
Trigonal prismatic (WIV)
Pyramidal (S2−)
Related compounds
Other anions
Tungsten(IV) oxide
Tungsten diselenide
Tungsten ditelluride
Other cations
Molybdenum disulfide
Tantalum disulfide
Rhenium disulfide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Tungsten disulfide is an inorganic chemical compound composed of tungsten and sulfur with the chemical formula WS2. This compound is part of the group of materials called the transition metal dichalcogenides. It occurs naturally as the rare mineral tungstenite. This material is a component of certain catalysts used for hydrodesulfurization and hydrodenitrification.

Contents

WS2 adopts a layered structure similar, or isotypic with MoS2, instead with W atoms situated in trigonal prismatic coordination sphere (in place of Mo atoms). Owing to this layered structure, WS2 forms non-carbon nanotubes, which were discovered after heating a thin sample of WS2 in 1992. [6]

Structure and physical properties

Atomic image (top) and model (bottom) of Nb-doped WS2. Blue, red, and yellow spheres indicate W, Nb, and S atoms, respectively. Nb doping allows to reduce the WS2 bandgap. WS2-Nb HRTEM2.jpg
Atomic image (top) and model (bottom) of Nb-doped WS2. Blue, red, and yellow spheres indicate W, Nb, and S atoms, respectively. Nb doping allows to reduce the WS2 bandgap.

Bulk WS2 forms dark gray hexagonal crystals with a layered structure. Like the closely related MoS2, it exhibits properties of a dry lubricant.

Although it has long been thought that WS2 is relatively stable in ambient air, recent reports on the ambient air oxidation of monolayer WS2 have found this to not be the case. In the monolayer form, WS2 is converted rather rapidly (over the course of days in ambient light and atmosphere) to tungsten oxide via a photo-oxidation reaction involving visible wavelengths of light readily absorbed by monolayer WS2 (< ~660 nm; > ~1.88 eV). [8] In addition to light of suitable wavelength, the reaction likely requires both oxygen and water to proceed, with the water thought to act as a catalyst for oxidation. The products of the reaction likely include various tungsten oxide species and sulfuric acid. The oxidation of other semiconductor transition metal dichalcogenides (S-TMDs) such as MoS2, has similarly been observed to occur in ambient light and atmospheric conditions. [9]

WS2 is also attacked by a mixture of nitric and hydrofluoric acid. When heated in oxygen-containing atmosphere, WS2 converts to tungsten trioxide. When heated in absence of oxygen, WS2 does not melt but decomposes to tungsten and sulfur, but only at 1250 °C. [1]

Historically monolayer WS2 was isolated using chemical exfoliation via intercalation with lithium from n-butyl lithium (in hexane), followed by exfoliation of the Li intercalated compound by sonication in water. [10] WS2 also undergoes exfoliation by treatment with various reagents such as chlorosulfonic acid [11] and the lithium halides. [12]

Synthesis

WS2 is produced by a number of methods. [1] [13] Many of these methods involve treating oxides with sources of sulfide or hydrosulfide, supplied as hydrogen sulfide or generated in situ.

Thin films and monolayers

Widely used techniques for the growth of monolayer WS2 include chemical vapor deposition (CVD), physical vapor deposition (PVD) or metal organic chemical vapor deposition (MOCVD), though most current methods produce sulfur vacancy defects in excess of 1×1013 cm−2. [14] Other routes entail thermolysis of tungsten(VI) sulfides (e.g., (R4N)2WS4) or the equivalent (e.g., WS3). [13]

Freestanding WS2 films can be produced as follows. WS2 is deposited on a hydrophilic substrate, such as sapphire, and then coated with a polymer, such as polystyrene. After dipping the sample in water for a few minutes, the hydrophobic WS2 film spontaneously peels off. [15]

Applications

WS2 is used, in conjunction with other materials, as catalyst for hydrotreating of crude oil. [13] In recent years it has also found applications as a saturable for passively mode locked fibre lasers resulting in femtosecond pulses being produced.

Lamellar tungsten disulphide is used as a dry lubricant for fasteners, bearings, and molds, [16] as well as having significant use in aerospace and military industries. [17] [ failed verification ] WS2 can be applied to a metal surface without binders or curing, via high-velocity air impingement. The most recent official standard for this process is laid out in the SAE International specification AMS2530A. [18]

Research

Like MoS2, nanostructured WS2 is actively studied for potential applications, such as storage of hydrogen and lithium. [11] WS2 also catalyses hydrogenation of carbon dioxide: [11] [19] [20]

CO2 + H2 → CO + H2O

Nanotubes

Tungsten disulfide is the first material which was found to form non-carbon nanotubes, in 1992. [6] This ability is related to the layered structure of WS2, and macroscopic amounts of WS2 have been produced by the methods mentioned above. [13] WS2 nanotubes have been investigated as reinforcing agents to improve the mechanical properties of polymeric nanocomposites. In a study, WS2 nanotubes reinforced biodegradable polymeric nanocomposites of polypropylene fumarate (PPF) showed significant increases in the Young's modulus, compression yield strength, flexural modulus and flexural yield strength, compared to single- and multi-walled carbon nanotubes reinforced PPF nanocomposites, suggesting that WS2 nanotubes may be better reinforcing agents than carbon nanotubes. [21] The addition of WS2 nanotubes to epoxy resin improved adhesion, fracture toughness and strain energy release rate. The wear of the nanotubes-reinforced epoxy is lower than that of pure epoxy. [22] WS2 nanotubes were embedded into a poly(methyl methacrylate) (PMMA) nanofiber matrix via electrospinning. The nanotubes were well dispersed and aligned along fiber axis. The enhanced stiffness and toughness of PMMA fiber meshes by means of non-carbon nanotubes addition may have potential uses as impact-absorbing materials, e.g. for ballistic vests. [23] [24]

WS2 nanotubes are hollow and can be filled with another material, to preserve or guide it to a desired location, or to generate new properties in the filler material which is confined within a nanometer-scale diameter. To this goal, non-carbon nanotube hybrids were made by filling WS2 nanotubes with molten lead, antimony or bismuth iodide salt by a capillary wetting process, resulting in PbI2@WS2, SbI3@WS2 or BiI3@WS2 core–shell nanotubes. [25]

Nanosheets

WS2 can also exist in the form of atomically thin sheets. [26] Such materials exhibit room-temperature photoluminescence in the monolayer limit. [27]

Transistors

Taiwan Semiconductor Manufacturing Company (TSMC) is investigating use of WS
2
as a channel material in field effect transistors. The approximately 6-layer thick material is created using chemical vapor deposition (CVD). [28]

Related Research Articles

<span class="mw-page-title-main">Boron nitride</span> Refractory compound of boron and nitrogen with formula BN

Boron nitride is a thermally and chemically resistant refractory compound of boron and nitrogen with the chemical formula BN. It exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagonal form corresponding to graphite is the most stable and soft among BN polymorphs, and is therefore used as a lubricant and an additive to cosmetic products. The cubic variety analogous to diamond is called c-BN; it is softer than diamond, but its thermal and chemical stability is superior. The rare wurtzite BN modification is similar to lonsdaleite but slightly softer than the cubic form.

<span class="mw-page-title-main">Molybdenum disulfide</span> Chemical compound

Molybdenum disulfide is an inorganic compound composed of molybdenum and sulfur. Its chemical formula is MoS
2
.

<span class="mw-page-title-main">Graphene</span> Hexagonal lattice made of carbon atoms

Graphene is an allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice nanostructure. The name is derived from "graphite" and the suffix -ene, reflecting the fact that the graphite allotrope of carbon contains numerous double bonds.

A non-carbon nanotube is a cylindrical molecule often composed of metal oxides, or group III-Nitrides and morphologically similar to a carbon nanotube. Non-carbon nanotubes have been observed to occur naturally in some mineral deposits.

<span class="mw-page-title-main">Nanocomposite</span> Solid material with nano-scale structure

Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm) or structures having nano-scale repeat distances between the different phases that make up the material.

<span class="mw-page-title-main">Titanium disulfide</span> Inorganic chemical compound

Titanium disulfide is an inorganic compound with the formula TiS2. A golden yellow solid with high electrical conductivity, it belongs to a group of compounds called transition metal dichalcogenides, which consist of the stoichiometry ME2. TiS2 has been employed as a cathode material in rechargeable batteries.

<span class="mw-page-title-main">Tungsten diselenide</span> Chemical compound

Tungsten diselenide is an inorganic compound with the formula WSe2. The compound adopts a hexagonal crystalline structure similar to molybdenum disulfide. The tungsten atoms are covalently bonded to six selenium ligands in a trigonal prismatic coordination sphere while each selenium is bonded to three tungsten atoms in a pyramidal geometry. The tungsten–selenium bond has a length of 0.2526 nm, and the distance between selenium atoms is 0.334 nm. It is a well studied example of a layered material. The layers stack together via van der Waals interactions. WSe2 is a very stable semiconductor in the group-VI transition metal dichalcogenides.

<span class="mw-page-title-main">Transition metal dichalcogenide monolayers</span> Thin semiconductors

Transition-metal dichalcogenide (TMD or TMDC) monolayers are atomically thin semiconductors of the type MX2, with M a transition-metal atom (Mo, W, etc.) and X a chalcogen atom (S, Se, or Te). One layer of M atoms is sandwiched between two layers of X atoms. They are part of the large family of so-called 2D materials, named so to emphasize their extraordinary thinness. For example, a MoS2 monolayer is only 6.5 Å thick. The key feature of these materials is the interaction of large atoms in the 2D structure as compared with first-row transition-metal dichalcogenides, e.g., WTe2 exhibits anomalous giant magnetoresistance and superconductivity.

In materials science, the term single-layer materials or 2D materials refers to crystalline solids consisting of a single layer of atoms. These materials are promising for some applications but remain the focus of research. Single-layer materials derived from single elements generally carry the -ene suffix in their names, e.g. graphene. Single-layer materials that are compounds of two or more elements have -ane or -ide suffixes. 2D materials can generally be categorized as either 2D allotropes of various elements or as compounds.

In materials science, MXenes are a class of two-dimensional inorganic compounds, that consist of atomically thin layers of transition metal carbides, nitrides, or carbonitrides. MXenes accept a variety of hydrophilic terminations. The first MXene was reported in 2011.

<span class="mw-page-title-main">Chemiresistor</span>

A chemiresistor is a material that changes its electrical resistance in response to changes in the nearby chemical environment. Chemiresistors are a class of chemical sensors that rely on the direct chemical interaction between the sensing material and the analyte. The sensing material and the analyte can interact by covalent bonding, hydrogen bonding, or molecular recognition. Several different materials have chemiresistor properties: metal-oxide semiconductors, some conductive polymers, and nanomaterials like graphene, carbon nanotubes and nanoparticles. Typically these materials are used as partially selective sensors in devices like electronic tongues or electronic noses.

A two-dimensional semiconductor is a type of natural semiconductor with thicknesses on the atomic scale. Geim and Novoselov et al. initiated the field in 2004 when they reported a new semiconducting material graphene, a flat monolayer of carbon atoms arranged in a 2D honeycomb lattice. A 2D monolayer semiconductor is significant because it exhibits stronger piezoelectric coupling than traditionally employed bulk forms. This coupling could enable applications. One research focus is on designing nanoelectronic components by the use of graphene as electrical conductor, hexagonal boron nitride as electrical insulator, and a transition metal dichalcogenide as semiconductor.

<span class="mw-page-title-main">Cobalt oxide nanoparticle</span>

In materials and electric battery research, cobalt oxide nanoparticles usually refers to particles of cobalt(II,III) oxide Co
3
O
4
of nanometer size, with various shapes and crystal structures.

A rapidly increasing list of graphene production techniques have been developed to enable graphene's use in commercial applications.

<span class="mw-page-title-main">Boron nitride nanosheet</span>

Boron nitride nanosheet is a two-dimensional crystalline form of the hexagonal boron nitride (h-BN), which has a thickness of one to few atomic layers. It is similar in geometry as well as physical and thermal properties to its all-carbon analog graphene, but has very different chemical and electronic properties – contrary to the black and highly conducting graphene, BN nanosheets are electrical insulators with a band gap of ~5.9 eV, and therefore appear white in color.

<span class="mw-page-title-main">Hafnium disulfide</span> Chemical compound

Hafnium disulfide is an inorganic compound of hafnium and sulfur. It is a layered dichalcogenide with the chemical formula is HfS2. A few atomic layers of this material can be exfoliated using the standard Scotch Tape technique (see graphene) and used for the fabrication of a field-effect transistor. High-yield synthesis of HfS2 has also been demonstrated using liquid phase exfoliation, resulting in the production of stable few-layer HfS2 flakes. Hafnium disulfide powder can be produced by reacting hydrogen sulfide and hafnium oxides at 500–1300 °C.

<span class="mw-page-title-main">Rhenium disulfide</span> Chemical compound

Rhenium disulfide is an inorganic compound of rhenium and sulfur with the formula ReS2. It has a layered structure where atoms are strongly bonded within each layer. The layers are held together by weak Van der Waals bonds, and can be easily peeled off from the bulk material.

Gurpreet Singh is a professor of Mechanical and Nuclear Engineering at [Kansas State University]. He is endowed by the Harold O. and Jane C. Massey Neff Professorship in Mechanical Engineering. Singh was born in Ludhiana, India; he currently resides in the United States.

<span class="mw-page-title-main">Tantalum diselenide</span> Chemical compound

Tantalum diselenide is a compound made with tantalum and selenium atoms, with chemical formula TaSe2, which belongs to the family of transition metal dichalcogenides. In contrast to molybdenum disulfide (MoS2) or rhenium disulfide (ReS2), tantalum diselenide does not occur spontaneously in nature, but it can be synthesized. Depending on the growth parameters, different types of crystal structures can be stabilized.

Jaime C. Grunlan is a material scientist and academic. He is a Professor of Mechanical Engineering, and Leland T. Jordan ’29 Chair Professor at Texas A&M University.

References

  1. 1 2 3 4 5 Eagleson, Mary (1994). Concise encyclopedia chemistry. Walter de Gruyter. p. 1129. ISBN   978-3-11-011451-5.
  2. Kam KK, Parkinson BA (February 1982). "Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides". Journal of Physical Chemistry. 86 (4): 463–467. doi:10.1021/j100393a010.
  3. Baglio JA, Calabrese GS, Kamieniecki E, Kershaw R, Kubiak CP, Ricco AJ, et al. (July 1982). "Characterization of n-Type Semiconducting Tungsten Disulfide Photoanodes in Aqueous and Nonaqueous Electrolyte Solutions Photo-oxidation of Halides with High Efficiency". J. Electrochem. Soc. 129 (7): 1461–1472. Bibcode:1982JElS..129.1461B. doi: 10.1149/1.2124184 .
  4. Gutiérrez H, Perea-López N, Elías AL, Berkdemir A, Wang B, Lv R, et al. (November 2012). "Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers". Nano Letters. 13 (8): 3447–3454. arXiv: 1208.1325 . Bibcode:2013NanoL..13.3447G. doi:10.1021/nl3026357. PMID   23194096. S2CID   207597527.
  5. Haynes WM, ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, FL: CRC Press. p. 4.136. ISBN   1-4398-5511-0.
  6. 1 2 Tenne R, Margulis L, Genut M, Hodes G (1992). "Polyhedral and cylindrical structures of tungsten disulphide". Nature. 360 (6403): 444–446. Bibcode:1992Natur.360..444T. doi:10.1038/360444a0. S2CID   4309310.
  7. Sasaki S, Kobayashi Y, Liu Z, Suenaga K, Maniwa Y, Miyauchi Y, et al. (2016). "Growth and optical properties of Nb-doped WS2 monolayers". Applied Physics Express. 9 (7): 071201. Bibcode:2016APExp...9g1201S. doi: 10.7567/APEX.9.071201 . Open Access logo PLoS transparent.svg
  8. Kotsakidis JC, Zhang Q, Vazquez de Parga AL, Currie M, Helmerson K, Gaskill DK, et al. (July 2019). "Oxidation of Monolayer WS2 in Ambient Is a Photoinduced Process". Nano Letters. 19 (8): 5205–5215. arXiv: 1906.00375 . Bibcode:2019NanoL..19.5205K. doi:10.1021/acs.nanolett.9b01599. PMID   31287707. S2CID   173990948.
  9. Gao J, Li B, Tan J, Chow P, Lu T, Koratker N (January 2016). "Aging of Transition Metal Dichalcogenide Monolayers". ACS Nano. 10 (2): 2628–2635. doi:10.1021/acsnano.5b07677. PMID   26808328. S2CID   18010466.
  10. Joensen P, Frindt RF, Morrison SR (1986). "Single-layer MoS2". Materials Research Bulletin. 21 (4): 457–461. doi:10.1016/0025-5408(86)90011-5.
  11. 1 2 3 Bhandavat R, David L, Singh G (2012). "Synthesis of Surface-Functionalized WS2 Nanosheets and Performance as Li-Ion Battery Anodes". The Journal of Physical Chemistry Letters. 3 (11): 1523–30. doi: 10.1021/jz300480w . PMID   26285632.
  12. Ghorai A, Midya A, Maiti R, Ray SK (2016). "Exfoliation of WS2 in the semiconducting phase using a group of lithium halides: a new method of Li intercalation". Dalton Transactions. 45 (38): 14979–14987. doi:10.1039/C6DT02823C. PMID   27560159.
  13. 1 2 3 4 Panigrahi, Pravas Kumar, Pathak, Amita (2008). "Microwave-assisted synthesis of WS2 nanowires through tetrathiotungstate precursors" (free download). Sci. Technol. Adv. Mater. 9 (4): 045008. Bibcode:2008STAdM...9d5008P. doi:10.1088/1468-6996/9/4/045008. PMC   5099650 . PMID   27878036.
  14. Hong J, Hu Z, Probert M, Li K, Lv D, Yang X, et al. (February 2015). "Eploring atomic defects in molybdenum disulphide monolayers". Nature Communications. 6: 6293. Bibcode:2015NatCo...6.6293H. doi: 10.1038/ncomms7293 . PMC   4346634 . PMID   25695374.
  15. Yu Y, Fong PW, Wang S, Surya C (2016). "Fabrication of WS2/GaN p-n Junction by Wafer-Scale WS2 Thin Film Transfer". Scientific Reports. 6: 37833. Bibcode:2016NatSR...637833Y. doi:10.1038/srep37833. PMC   5126671 . PMID   27897210.
  16. French LG, ed. (1967). "Dicronite". Machinery. Vol. 73. Machinery Publications Corporation. p. 101.
  17. "Quality Approved Special Processes By Special Process Code". BAE Systems. 2020-07-07.
  18. "AMS2530A: Tungsten Disulfide Coating, Thin Lubricating Film, Binder-Less Impingement Applied". SAE International. Retrieved 2020-07-10.
  19. Lassner, Erik, Schubert, Wolf-Dieter (1999). Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds. Springer. pp. 374–. ISBN   978-0-306-45053-2.
  20. Engineer making rechargeable batteries with layered nanomaterials. Science Daily (2013-01-016)
  21. Lalwani G (September 2013). "Tungsten disulfide nanotubes reinforced biodegradable polymers for bone tissue engineering". Acta Biomaterialia. 9 (9): 8365–8373. doi:10.1016/j.actbio.2013.05.018. PMC   3732565 . PMID   23727293.
  22. Zohar, E., et al. (2011). "The Mechanical and Tribological Properties of Epoxy Nanocomposites with WS2 Nanotubes". Sensors & Transducers Journal. 12 (Special Issue): 53–65.
  23. Reddy, C. S., Zak, A., Zussman, E. (2011). "WS2 nanotubes embedded in PMMA nanofibers as energy absorptive material". J. Mater. Chem. 21 (40): 16086–16093. doi:10.1039/C1JM12700D.
  24. Nano-Armor: Protecting the Soldiers of Tomorrow. Physorg.com (2005-12-10). Retrieved on 2016-01-20
  25. Kreizman R, Enyashin AN, Deepak FL, Albu-Yaron A, Popovitz-Biro R, Seifert G, et al. (2010). "Synthesis of Core-Shell Inorganic Nanotubes". Adv. Funct. Mater. 20 (15): 2459–2468. doi:10.1002/adfm.201000490. S2CID   136725896.
  26. Coleman JN, Lotya M, O'Neill A, Bergin SD, King PJ, Khan U, et al. (2011). "Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials". Science. 331 (6017): 568–71. Bibcode:2011Sci...331..568C. doi:10.1126/science.1194975. hdl: 2262/66458 . PMID   21292974. S2CID   23576676.
  27. Gutiérrez HR, Perea-López N, Elías AL, Berkdemir A, Wang B, Lv R, et al. (2013). "Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers". Nano Letters. 13 (8): 3447–54. arXiv: 1208.1325 . Bibcode:2013NanoL..13.3447G. doi:10.1021/nl3026357. PMID   23194096. S2CID   207597527.
  28. Cheng C, Chung Y, Li U, Lin C, Li C, Chen J, et al. (2019). "First demonstration of 40-nm channel length top-gate WS2 pFET using channel area-selective CVD growth directly on SiOx/Si substrate". 2019 Symposium on VLSI Technology. IEEE. pp. T244–T245. doi:10.23919/VLSIT.2019.8776498. ISBN   978-4-86348-719-2. S2CID   198931613.