Thiogermanate

Last updated

Sulfidogermanates or thiogermanates are chemical compounds containing anions with sulfur atoms bound to germanium. They are in the class of chalcogenidotetrelates. Related compounds include thiosilicates, thiostannates, selenidogermanates, telluridogermanates and selenidostannates.

Contents

Coordination of sulfur around germanium is tetrahedral meaning there are four sulfur atoms symmetrically arranged. This basic structure can form ortho salts with GeS44−, oligomers, or polymeric structures. [1] Similar structures are also formed with heavy group 13 and group 14 elements due to their relatively stronger bonds with sulfur. Light elements from these groups have lower affinity for sulfur, so there are fewer compounds like this for boron, aluminium, carbon, and silicon. [1] Other heavy group 12 and 15 elements also form chalcogenidometallates which may have other kinds of coordination. Selenium forms similar compounds to sulfur in this family. [1]

Where sulfur is deficient, an anion is not formed, and instead cation-like covalent compounds can exist with halogens, such as Ge4S6Br4, [2] or Ge4S6I4. [3]

Production

The solvochemical method of production involves dissolving germanium oxide, sulfur and other salts in a heated solvent under pressure. The solvents can include simple alcohols, amines or N,N-dimethyl formamide. The containers can be glass tubes, quartz tubes, or teflon lined stainless steel. [1]

List

formulanamesystemspace groupcell Åvolumedensitycommentsref
H4Ge4S10thiogermanic acidtriclinicP1a = 8.621, b = 9.899, c = 10.009, α = 85.963°, β = 64.714°, γ = 89.501°, Z = 2 [4] [5]
H2Ge4S9thiogermanic acid [4]
Li2GeS3hexagonalP61a = 6.79364 c = 17.9072 [6]
[CH3NH3]4Ge2S6tetrakis(methylammonium) bis(μ-sulfido)-tetrakis(sulfido)-di-germaniumtriclinicP1a 7.3336 b 7.3760 c 10.0007, α 108.598° β 111.332° γ 90.297° [7]
[CH3CH2NH3]4Ge2S6•CH3CH2NH2tetrakis(ethylammonium) bis(μ-sulfido)-tetrakis(sulfido)-di-germanium ethylamineorthorhombicPnmaa 7.8501 b 18.3444 c 17.4386 [7]
[CH3CH2NH3]3[CH3NH3]Ge4S10tris(diethylammonium) methylammonium hexakis(μ-sulfido)-tris(sulfido)-tetra-germaniumPa3a 17.9402 c 17.9402 [7]
(NH4)2[NH2(CH3)2]2Ge2S6monoclinicP21/ca = 6.965, b = 15.7195, c = 7.2045, β = 92.765°band gap 3.50 eV [8]
(NH3NH2)2[(RNGe)2(μ-S)2S2] [9]
[(R1Ge)4(μ-S)6]R1 = CMe2CH2COMe [9] [10]
(trenH2)2[Ge2S6]tren = tris(2-aminoethyl)aminemonoclinicC2/ca=25.264 b=7.313 c=16.584 β=122.616 Z=425811.632colourless [11]
(enH)4Ge2S6en = ethylenediaminetriclinicP1a 7.859 b 9.514 c 9.727, α 64.21° β 66.80° γ 84.92° [12]
Na4Ge2S6 · 14H2OtriclinicP1a = 9.978, b = 7.202, c = 9.601, α = 108.41 β = 92.39, γ = 91.69° Z = 1 [13]
Na6Ge2S7 [14]
Li4MgGe2S7monoclinicCca=16.872 b=6.771 c=10.156 β=95.169°SHG 0.7 ×AGS [15]
Na(AlS2)(GeS2)4monoclinicP21/na = 6.803, b = 38.207, c = 6.947, β = 119.17° [16]
Li10GeP2S12tetragonallithium ion conductor [17]
K6Ge2S7 [14]
[VO(dien)]2GeS4orthorhombicPna21a =19.831, b = 8.0814, c = 12.0889, Z = 41937.4 [18]
{[V(en)2]2O}Ge2S6en = ethylenediaminemonoclinicP21/na=8.352 b=12.682 c=11.339  β=94.75 Z=21196.91.931black [19]
[VO(dap)2]2Ge2S6·dapdap = 1,2-diaminopropanehexagonalR2c ?a=38.284 c=11.170 Z=18141781.619purple; hexagonal nanotubes [19]
Li4MnGe2S7monoclinicCca=16.833 b=6.709 c=10.121 β=94.76° Z=41139.12.637light pink [15] [20]
{[Mn(2,2′-bipy)2(H2O)]2Ge4S10}·3H2Obipy = bipyridinetriclinicP1a=10.6511 b=13.0443 c=22.995, α=79.539 β=77.653° γ=79.737° Z=23036.61.570 [21]
{Mn(tepa)}2(μ-Ge2Se6)tetragonalI41/a [22]
Mn2(en)4Ge2S6en=ethylenediamine [23]
[Mn(en)3]2Ge2S6monoclinicC2/ca 15.115 b 10.530 c 22.897, 118.777° [12]
Mn2(dap)4Ge2S6dap = 1,2-diaminopropane [23]
H2dienMnGeS4dien = diethylenetriamine [23]
[(dien)2Mn]Ge2S4dien=diethylenetriamineorthorhombicP212121a=9.113, b=12.475, c=17.077, Z=419411D [Ge2S4]2− chains [24]
Mn3Ge2S7(NH3)4orthorhombicPbcna=9.107 b=13.923 c=12.750 Z=41616.62.476green [25]
[MnII(tren)]2(μ2-Ge2S6)tren = N,N,N-tris(2-aminoethyl)aminetriclinicP1a 7.631 b 8.039 c 11.957, α 98.952° β 101.263° γ 109.696° [26]
[MnII(tepa)]2(μ2-Ge2S6)tepa= tetraethylenepentaamineorthorhombicI 41/aa =25.770 b =25.770 c =9.812 [26]
[Fe(2,2′-bipy)3]2[Ge4S10]·10H2OmonoclinicP21/ca=23.8411 b=13.6462 c=22.9029 β=93.400° Z=47438.11.643 [21]
{Fe(tepa)}2(μ-Ge2Se6)tetragonalI41/a [22]
K2FeGe3S8triclinicP1a = 7.016, b= 7.770, c = 14.342, α = 93.80°, β = 92.65°, γ = 114.04° [27]
K2CoGe3S8monoclinicP21a = 7.1089, b = 11.8823, c = 16.759, β = 96.604° [27]
[{Co(tepa)}2(μ-Ge2S6)]tepa= tetraethylenepentaaminetetragonalI41/a [22]
[dienH2][Co(dien)2][Ge2S6]dien = diethylenetriaminetriclinicP1a 11.3224 b 14.6492 c 18.3710, α 71.000° β 78.352° γ 73.441° Z=42741.51.715yellow [28]
[dienH2][Co(dien)2][Ge2S6]triclinicP1a 11.3224 b 14.6492 c 18.3710, α 71.000° β 78.352° γ 73.441° Z=1679.621.730yellow [28]
[dienH2][Co(dien)2][Ge2S6]orthorhombicPbcaa=15.2110 b=16.7025 c=21.8821 Z=85559.41.692yellow [28]
[dienH2][Co(dien)2][Ge2S6]orthorhombicPca21a=a=14.7043 b=9.0099 c=21.4540 Z=42842.31.655yellow [28]
[Ni(cyclam)]3[Ni(cyclam)(H2O)2][Ge4S10]2·21H2Ocyclam = 1,4,8,11-tetraazacyclotetradecanemonoclinicCca=35.915 b=10.047 c=30.607 β =115.32 Z=499831.778 [21]
[Ni(en)3]2Ge2S6en=ethylenediamineorthorhombicPbcaa 15.56 b 11.226 c 18.07 [12]
[Ni(dien)2]3[Ge3Sb8S21]·0.5H2Odien = diethylenetriamine [29]
[Ni(trien)2]2Ge4S10bis(bis(triethylenetetramine)-nickel) hexakis(μ2-sulfido)-tetrasulfido-tetra-germaniummonoclinicC2/ca =21.618 b =10.957 c =22.719, β=111.224° [30]
[{Ni(tepa)}2(μ-Ge2S6)]tetrakis(μ2-sulfido)-disulfido-bis(tetraethylenepentamine)-di-germanium-di-nickelorthorhombicPbcaa =15.151 b =13.083 c =15.255 [30]
[NiII(dien)2]2(Ge2S6)dien = diethylenetriaminemonoclinicP 21/na 10.093 b 14.219 c 11.703, β 91.631° [26]
[NiII(dien)2](H2pipe)(Ge2S6)pipe = piperazinetriclinicP1a 6.980 b 8.530 c 11.527, α 93.03° β 106.29° γ 101.95° [26]
[NiII(tepa)]2(μ2-Ge2S6)tepa = tetraethylenepentamineorthorhombicPbcaa =15.147 b =13.0552 c =15.238 [26]
[(CH3CH2)4N]3CuGe4S10catena-[hexakis(tetraethylammonium) hexadecakis(μ-sulfido)-tetrakis(sulfido)-octa-germanium-di-copper]monoclinicP 21/na 15.0956 b 14.2127 c =19.5889, β 91.131° [7]
[H4teta]5[Cu40Ge15S60]·2.5(teta) [31]
Cu(AlS2)(GeS2)4monoclinicP21/na 6.796 b 37.628 c 6.8797, β 119.52° [16]
Cu4MnGe2S7monoclinicCca=16.7443 b=6.47893 c=9.8060 β=93.188° [15]
Cu4FeGe2S7monoclinicC2a=11.7405 b=5.3589 c=8.3420 β=98.661° [15]
Cu4CoGe2S7monoclinicC2a=11.7280 b=5.3399 c=8.3313 β=98.668° [15]
Cu4NiGe2S7monoclinicC2a=11.703 b=5.333 c=8.311 β=98.37° [15]
Sr2CoGe2OS6tetrahedralP421ma=9.4056 c=6.1741 Z=2546.193.574dark green; oxysulfide [32]
Y3LiGeS7 [33]
[Y2(tepa)2(μ-OH)2(μ-Ge2S6)](tepa)0.5·H2OmonoclinicC2/ca=19.638 b=14.415 c=16.910 β=122.47 Z=44038.61.863colourless [11]
KYGeS4 [34]
[{RNGe(μ-S)3}4Pd6]·MeOHRN = CMe2CH2CMeNNH2 [9]
Ag10Ge3S11monoclinicCca = 2.6244 b = 0.65020 c = 2.5083 β = 109.910° [35]
[(CH3CH2)4N]3AgGe4S10catena-[hexakis(tetraethylammonium) hexadecakis(μ-sulfido)-tetrakis(sulfido)-di-silver-octa-germanium]monoclinicP 21/na 15.1898 b 14.3043 c 19.5059, β 91.056° [7]
Ag(AlS2)(GeS2)4monoclinicP21/na 6.799 b 38.4169 c 6.813 β 119.65° [16]
Li4CdGe2S7monoclinicCca=17.4432 b=6.9353 c=10.3271 β=93.9042° [15]
Na4CdGe2S7monoclinicP21/ca=7.0813 b=11.9007 c=15.5759 β=90.791° [15]
Y3Cd0.5GeS7 [33]
Ag4SnGe2S7monoclinicCca=11.3398 b=6.9706 c=15.4885 β=91.213°yellow; [SnGe2S8]6– chains [15]
Na9Sb(Ge2S6)2monoclinicC2/ma=7.5857 b=11.574 c=6.817 β=106.587 Z=1573.72.905yellow [36]
[Ge(en)3][GeSb2S6]orthorhombicPbca [1]
[(Me)2NH2]6[Ge2Sb2S7][Ge4S10]triclinicP1microporous, can exchange dimethyl ammonium for alkalis [28] [37]
[dabcoH]2[Ge2Sb3S10]dabco = 1,4-diazabicyclo[2.2.2]octane [28]
DMAH[dabcoH]2[Ge2Sb3S10]dabco = 1,4-diazabicyclo[2.2.2]octanemonoclinicC2 [1]
[DMAH]2GeSb3S6P41212 [1]
[AEPH2][GeSb2S6]·CH3OHAEP = N-(2-aminoethyl)piperazineorthorhombicPbcaa=6.7183 b=18.3065 c=31.5007 Z=83874.22.303yellow [28] [38]
[CH3NH3]20Ge10Sb28S72·7H2OmonoclinicC2/ca =29.2964 b=29.3261 c=41.601 β=100.084° [39]
[(CH3CH2CH2)2NH2]3Ge3Sb5S15·0.5(C2H5OH)triclinicP1a=9.7628 b=15.7590 c=17.0313, α=79.868° β=75.010° γ=81.094° [39]
[Mn(en)3][GeSb2S6]dien = diethylenetriamineorthorhombicPbcaa=13.374 b=17.607 c=18.562 Z=84370.82.26yellow [28] [40]
[Co(en)3][GeSb2S6]orthorhombicPbca
[Co(dien)2]2[GeSb4S10]dien = diethylenetriamineorthorhombicPbcaa=14.684 b=17.133 c=33.478 Z=884222.205yellow [28] [40]
[Ni(en)3][GeSb2S6]orthorhombicPbca
[Ni(dien)2]3[Ge3Sb8S21]·0.5H2OmonoclinicC2/ma =17.604 b =30.660 c =15.348 β =114.69° [28]
La(dien)2(μ–η12-GeS3(SH))monoclinicC2/ca=27.837 b=16.993 c=8.318 β =103.96 Z=83818.71.903red [41]
KLaGeS4monoclinicP21a=6.6645 b=6.7079 c=8.7248 β=107.519° Z=2371.95SHG 1.2×AgGaS2; band gap 3.34 eV; birefringence 0.098 @ 1064 nm [34]
Nd(dien)2(μ–η12-GeS3(SH))monoclinicC2/ca=27.694 b=16.845 c=8.287 β =103.791 Z=83754.41.955red [41]
[Pr(dien)3]2[Ge2S6]Cl2dien = diethylenetriaminemonoclinicP21/na=11.637 b=14.143 c=15.120 β=98.149° Z=424631.765green [42]
[Sm(dien)3]2[Ge2S6]Cl2dien = diethylenetriaminemonoclinicP21/n11.532 b=14.423 c=14.573 β=97.105° Z=424051.834light yellow [42]
Sm3Zn0.5GeS7 [33]
Eu3Ge3S9a=8.468 b=11.76 c=8.389 α=90.49° β=104.56° γ=69.53° Z=24.22 meas [43]
[Eu(dien)3]2[Ge2S6]Cl2dien = diethylenetriaminemonoclinicP21/na=11.567 b=14.633 c=14.465 β=96.434 Z=42432.91.818yellow [11]
Gd3Cd0.5GeS7 [33]
[Gd(dien)3]2[Ge2S6]Cl2dien = diethylenetriaminemonoclinicP21/n11.548 b=14.677 c=14.427 β=96.332° Z=42430.41.834colourless [42]
[Dy(dien)3]2[Ge2S6]Cl2dien = diethylenetriaminemonoclinicP21/na=11.503 b=14.645 c=14.340 β=96.178° Z=42401.81.870light yellow [42]
[Ho(trien)(en)GeS3(SH)]trien = triethylenetetramine [42]
Er2(tepa)2(μ-OH)2(μ-Ge2S6)]n·nH2Otepa = tetraethylenepentamine [44]
[Er2(dien)4(μ-OH)2][Ge2S6]dien = diethylenetriaminemonoclinicP21/n11.710 b=11.318 c=13.548 β=97.635° Z=41779.62.088red [42]
Tm2(tepa)2(μ-OH)2(μ-Ge2S6)]n·nH2Otepa = tetraethylenepentamine [44]
Li4HgGe2S7monoclinicCca=16.876 b=6.7764 c=10.161 β=93.360° [15]
Ag4HgGe2S7monoclinicCca=17.4546 b=6.8093 c=10.5342 β=93.3980° [15]
[(Me)2NH2][BiGeS4]monoclinicP21a=6.7290 b c=10.6748 β=105.789 Z=2479.723.156red [45]

Related Research Articles

The borate fluorides or fluoroborates are compounds containing borate or complex borate ions along with fluoride ions that form salts with cations such as metals. They are in the broader category of mixed anion compounds. They are not to be confused with tetrafluoroborates (BF4) or the fluorooxoborates which have fluorine bonded to boron.

The borate carbonates are mixed anion compounds containing both borate and carbonate ions. Compared to mixed anion compounds containing halides, these are quite rare. They are hard to make, requiring higher temperatures, which are likely to decompose carbonate to carbon dioxide. The reason for the difficulty of formation is that when entering a crystal lattice, the anions have to be correctly located, and correctly oriented. They are also known as carbonatoborates or borocarbonates. Although these compounds have been termed carboborate, that word also refers to the C=B=C5− anion, or CB11H12 anion. This last anion should be called 1-carba-closo-dodecaborate or monocarba-closo-dodecaborate.

An oxyhydride is a mixed anion compound containing both oxide O2− and hydride ions H. These compounds may be unexpected as the hydrogen and oxygen could be expected to react to form water. But if the metals making up the cations are electropositive enough, and the conditions are reducing enough, solid materials can be made that combine hydrogen and oxygen in the negative ion role.

The selenide iodides are chemical compounds that contain both selenide ions (Se2−) and iodide ions (I) and one or metal atoms. They are in the class of mixed anion compounds or chalcogenide halides.

The iodate fluorides are chemical compounds which contain both iodate and fluoride anions (IO3 and F). In these compounds fluorine is not bound to iodine as it is in fluoroiodates.

The sulfate fluorides are double salts that contain both sulfate and fluoride anions. They are in the class of mixed anion compounds. Some of these minerals are deposited in fumaroles.

The borophosphates are mixed anion compounds containing borate and phosphate anions, which may be joined together by a common oxygen atom. Compounds that contain water or hydroxy groups can also be included in the class of compounds.

The boroselenites are heteropoly anion chemical compounds containing selenite and borate groups linked by common oxygen atoms. They are not to be confused with the boroselenates with have a higher oxidation state for selenium, and extra oxygen. If selenium is replaced by sulfur, it would be a borosulfite. Boroselenites are distinct from selenoborates in which selenium replaces oxygen in borate, or perselenoborates which contain Se-Se bonds as well as Se-B bonds. The metal boroselenites were only discovered in 2012.

Borate sulfides are chemical mixed anion compounds that contain any kind of borate and sulfide ions. They are distinct from thioborates in which sulfur atoms replace oxygen in borates. There are also analogous borate selenides, with selenium ions instead of sulfur.

The borate bromides are mixed anion compounds that contain borate and bromide anions. They are in the borate halide family of compounds which also includes borate fluorides, borate chlorides, and borate iodides.

The borate iodides are mixed anion compounds that contain both borate and iodide anions. They are in the borate halide family of compounds which also includes borate fluorides, borate chlorides, and borate bromides.

Fluoride nitrates are mixed anion compounds that contain both fluoride ions and nitrate ions. Compounds are known for some amino acids and for some heavy elements. Some transition metal fluorido complexes that are nitrates are also known. There are also fluorido nitrato complex ions known in solution.

Selenogallates are chemical compounds which contain anionic units of selenium connected to gallium. They can be considered as gallates where selenium substitutes for oxygen. Similar compounds include the thiogallates and selenostannates. They are in the category of chalcogenotrielates or more broadly chalcogenometallates.

Sulfidostannates, or thiostannates are chemical compounds containing anions composed of tin linked with sulfur. They can be considered as stannates with sulfur substituting for oxygen. Related compounds include the thiosilicates, and thiogermanates, and by varying the chalcogen: selenostannates, and tellurostannates. Oxothiostannates have oxygen in addition to sulfur. Thiostannates can be classed as chalcogenidometalates, thiometallates, chalcogenidotetrelates, thiotetrelates, and chalcogenidostannates. Tin is almost always in the +4 oxidation state in thiostannates, although a couple of mixed sulfides in the +2 state are known,

Arsenidosilicates are chemical compounds that contain anions with arsenic bonded to silicon. They are in the category of tetrelarsenides, pnictidosilicates, or tetrelpnictides. They can be classed as Zintl phases or intermetallics. They are analogous to the nitridosilicates, phosphidosilicates, arsenidogermanates, and arsenidostannates. They are distinct from arsenate silicates which have oxygen connected with arsenic and silicon, or arsenatosilicates with arsenate groups sharing oxygen with silicate.

Selenidogermanates are compounds with anions with selenium bound to germanium. They are analogous with germanates, thiogermanates, and telluridogermanates.

Selenidostannates are chemical compounds which contain anionic units of selenium connected to tin. They can be considered as stannates where selenium substitutes for oxygen. Similar compounds include the selenogermanates and thiostannates. They are in the category of chalcogenidotetrelates or more broadly chalcogenometallates.

Tellurogermanates or telluridogermanates are compounds with anions with tellurium bound to germanium. They are analogous with germanates, thiogermanates and selenidogermanates.

Selenite sulfates are mixed anion compounds containing both selenite (SeO32−) and sulfate (SO42−) anions.

A selenophosphate is a chemical compound containing phosphate anions substituted with selenium. Over 7000 compounds are known with a bond between selenium and phosphorus. Compared to phosphorus-sulfur compounds selenophosphates are less thermally stable, and more easily destroyed by water. However they are more stable than tellurophosphates which have an even weaker phosphorus-tellurium bond. Selenophosphates have an oxidation number for phosphorus of +5. But in many there are bonds between phosphorus atoms, reducing the oxidation state to +4, Some may be termed selenophosphites.

References

  1. 1 2 3 4 5 6 7 Wang, Kai-Yao; Feng, Mei-Ling; Huang, Xiao-Ying; Li, Jing (September 2016). "Organically directed heterometallic chalcogenidometalates containing group 12(II)/13(III)/14(IV) metal ions and antimony(III)". Coordination Chemistry Reviews. 322: 41–68. doi:10.1016/j.ccr.2016.04.021.
  2. Pohl, Siegfried (March 1976). "Ge4S6Br4—The First Sulfide Halide of Germanium". Angewandte Chemie International Edition in English. 15 (3): 162. doi:10.1002/anie.197601621.
  3. Pohl, Siegfried; Seyer, Ulrich; Krebs, Bernt (1 November 1981). "Sulfidhalogenide des Germaniums: Darstellung und Strukturen von Ge 4 S 6 Br 4 und Ge 4 S 6 I 4 / Thiohalides of Germanium: Preparation and Structures of Ge 4 SeBr 4 and Ge 4 S 6 I 4". Zeitschrift für Naturforschung B. 36 (11): 1432–1443. doi: 10.1515/znb-1981-1116 . S2CID   93779728.
  4. 1 2 Poling, Steven A.; Nelson, Carly R.; Sutherland, Jacob T.; Martin, Steve W. (2003-06-01). "Synthesis and Characterization of the Thiogermanic Acids H 4 Ge 4 S 10 and H 2 Ge 4 S 9". The Journal of Physical Chemistry B. 107 (23): 5413–5418. doi:10.1021/jp027313w. ISSN   1520-6106.
  5. Poling, Steven A.; Nelson, Carly R.; Sutherland, Jacob T.; Martin, Steve W. (2003-11-01). "Crystal Structure of Thiogermanic Acid H 4 Ge 4 S 10". Inorganic Chemistry. 42 (23): 7372–7374. doi:10.1021/ic034659s. ISSN   0020-1669. PMID   14606829.
  6. Roh, Jihun; Do, Namgyu; Manjón-Sanz, Alicia; Hong, Seung-Tae (2023-10-02). "Li 2 GeS 3 : Lithium Ionic Conductor with an Unprecedented Structural Type". Inorganic Chemistry. 62 (39): 15856–15863. doi:10.1021/acs.inorgchem.3c01431. ISSN   0020-1669.
  7. 1 2 3 4 5 Wang, Kai-Yao; Zhang, Shu; Liu, Hua-Wei; Cheng, Lin; Wang, Cheng (2019-10-07). "Stepwise Conversion from GeO 2 to [MGe 4 S 10 ] n 3 n – (M = Cu, Ag) Polymer via Isolatable [Ge 2 S 6 ] 4– and [Ge 4 S 10 ] 4– Anions by Virtue of Templating Technique". Inorganic Chemistry. 58 (19): 12832–12842. doi:10.1021/acs.inorgchem.9b01779. ISSN   0020-1669. PMID   31490672. S2CID   201869666.
  8. Zhang, Jian-Han; Su, Zhi-Zhong; Luo, Ju-Xiang; Zhao, Yi; Wang, Hong-Gang; Ying, Shao-Ming (May 2020). "Synthesis, structure, and characterization of a mixed amines thiogermanate [NH4]2[NH2(CH3)2]2Ge2S6". Polyhedron. 182: 114486. doi:10.1016/j.poly.2020.114486. S2CID   216378118.
  9. 1 2 3 Halvagar, Mohammad Reza; Hassanzadeh Fard, Zohreh; Xiong, Lin; Dehnen, Stefanie (2009-08-03). "Facile Access to the Hydrazone Functionalized PdGeS Cluster [{R N Ge(μ-S) 3 } 4 Pd 6 ] from the Thiogermanate Anion [{R N Ge} 2 (μ-S) 2 S 2 ] 2−". Inorganic Chemistry. 48 (15): 7373–7377. doi:10.1021/ic900853e. ISSN   0020-1669. PMID   19586024.
  10. Eußner, Jens P.; Dehnen, Stefanie (September 2012). "Formation of Thiosemicarbazone-Functionalized Complexes with (GeS 2 ) 2 and (SnS 2 ) 2 Units". Zeitschrift für anorganische und allgemeine Chemie (in German). 638 (11): 1827–1832. doi: 10.1002/zaac.201200292 .
  11. 1 2 3 Liu, Xing; Hu, Feilong; Zhou, Jian; An, Litao; Liang, Dawen; Lin, Jianwu (2012). "Solvothermal synthesis, crystal structures and properties of three new thiogermanates: the only example of the thiogermanate anion [Ge2S6]4− as a bridging ligand to a lanthanide complex ion". CrystEngComm. 14 (10): 3464. doi:10.1039/c2ce25082a. ISSN   1466-8033.
  12. 1 2 3 Jia, Ding-Xian; Dai, Jie; Zhu, Qin-Yu; Cao, Li-Hui; Lin, Hai-Hong (March 2005). "Solvothermal synthesis of three new dimeric thiogermanates (enH)4Ge2S6, [Mn(en)3]2Ge2S6 and [Ni(en)3]2Ge2S6 from germanium dioxide and sulfur powder". Journal of Solid State Chemistry. 178 (3): 874–881. Bibcode:2005JSSCh.178..874J. doi:10.1016/j.jssc.2004.07.045.
  13. Krebs, B.; Pohl, S.; Schiwy, W. (November 1972). "Darstellung und Struktur von Na4Ge2S6 . 14H2O und Na4Sn2S6 . 14H2O". Zeitschrift für anorganische und allgemeine Chemie (in German). 393 (3): 241–252. doi:10.1002/zaac.19723930307. ISSN   0044-2313.
  14. 1 2 Willard, Hobart H.; Zuehlke, C. W. (October 1943). "The Preparation and Properties of Potassium Thiogermanate and Thiogermanic Acid 1". Journal of the American Chemical Society. 65 (10): 1887–1889. doi:10.1021/ja01250a026. ISSN   0002-7863.
  15. 1 2 3 4 5 6 7 8 9 10 11 Wang, Peng; Abudoureheman, Maierhaba; Zhang, Kewang; Zheng, Juanjuan; Chen, Zhaohui; Wu, Qi (2022-10-03). "Ag 4 SnGe 2 S 7 : A Noncentrosymmetric Chalcogenide in I 4 –II–IV 2 –VI 7 System with Non-Diamond-Like Structure Featuring 1D ∞ [SnGe 2 S 8 ] 6– Infinite Chain". Inorganic Chemistry. 61 (39): 15303–15309. doi:10.1021/acs.inorgchem.2c01828. ISSN   0020-1669. PMID   36126330. S2CID   252405280.
  16. 1 2 3 Alahmari, Fatimah; Davaasuren, Bambar; Emwas, Abdul-Hamid; Rothenberger, Alexander (2018-04-02). "Thioaluminogermanate M (AlS 2 )(GeS 2 ) 4 ( M = Na, Ag, Cu): Synthesis, Crystal Structures, Characterization, Ion-Exchange and Solid-State 27 Al and 23 Na NMR Spectroscopy". Inorganic Chemistry. 57 (7): 3713–3719. doi:10.1021/acs.inorgchem.7b02980. hdl: 10754/627415 . ISSN   0020-1669. PMID   29537828.
  17. Xu, Miao; Song, Subin; Daikuhara, Shugo; Matsui, Naoki; Hori, Satoshi; Suzuki, Kota; Hirayama, Masaaki; Shiotani, Shinya; Nakanishi, Shinji; Yonemura, Masao; Saito, Takashi (2022-01-10). "Li 10 GeP 2 S 12 -Type Structured Solid Solution Phases in the Li 9+δ P 3+δ′ S 12– k O k System: Controlling Crystallinity by Synthesis to Improve the Air Stability". Inorganic Chemistry. 61 (1): 52–61. doi: 10.1021/acs.inorgchem.1c01748 . ISSN   0020-1669. PMID   34914367. S2CID   245270702.
  18. Wang, Jing; Näther, Christian; Djamil, John; Bensch, Wolfgang (August 2012). "[VO(dien)]2GeS4: Solvothermal Synthesis and Crystal Structure with an Ortho-Thiogermanate as Tetradentate Ligand". Zeitschrift für anorganische und allgemeine Chemie. 638 (10): 1452–1456. doi:10.1002/zaac.201200174.
  19. 1 2 Qian, Li-Wen; Zhao, Xiao-Wei; Su, Hu-Chao; Bian, Guo-Qing; Zhu, Qin-Yu; Dai, Jie (2016). "Supramolecular hexagonal nano tubes assembled by vanadium diamine complexes with thiogermanates". RSC Advances. 6 (20): 16268–16273. Bibcode:2016RSCAd...616268Q. doi:10.1039/C5RA27088J. ISSN   2046-2069.
  20. Kaib, Thomas; Haddadpour, Sima; Andersen, Hanne Flåten; Mayrhofer, Leonhard; Järvi, Tommi T.; Moseler, Michael; Möller, Kai-Christian; Dehnen, Stefanie (2013-12-10). "Quaternary Diamond-Like Chalcogenidometalate Networks as Efficient Anode Material in Lithium-Ion Batteries". Advanced Functional Materials. 23 (46): 5693–5699. doi:10.1002/adfm.201301025. S2CID   93236286.
  21. 1 2 3 Danker, Felix; Näther, Christian; Pielnhofer, Florian; Bensch, Wolfgang (2017-10-10). "Room‐Temperature Synthesis of Three Compounds Featuring the [Ge 4 S 10 ] 4– Anion from a Water‐Soluble Thiogermanate Precursor". European Journal of Inorganic Chemistry. 2017 (37): 4317–4323. doi:10.1002/ejic.201700795. ISSN   1434-1948.
  22. 1 2 3 Chen, Jiang-Fang; Jin, Qin-Yan; Pan, Ying-Li; Zhang, Yong; Jia, Ding-Xian (January 2010). "Solvothermal Syntheses and Characterization of New Transition Metal Chalcogenidogermanates [{Co(tepa)} 2 (μ-Ge 2 S 6 )] and [{M(tepa)} 2 (μ-Ge 2 Se 6 )] (M = Mn, Fe) (tepa = Tetraethylenepentamine)". Zeitschrift für anorganische und allgemeine Chemie. 636 (1): 230–235. doi:10.1002/zaac.200900141.
  23. 1 2 3 Luo, Hai-Ying; Zhou, Jian; Cao, Shumei (2019). "A series of new hybrid chalcogenogermanates: the rare examples of chalcogenogermanates combined with trivalent vanadium complexes". Dalton Transactions. 48 (29): 10907–10914. doi:10.1039/C9DT02077B. ISSN   1477-9226. PMID   31282904. S2CID   195828996.
  24. Yue, Cheng-Yang; Yuan, Zhuang-Dong; Zhang, Lu-Ge; Wang, Ya-Bai; Liu, Guo-Dong; Gong, Liao-Kuo; Lei, Xiao-Wu (October 2013). "Synthesis, crystal structure and properties of [(dien)2Mn]Ge2S4 with mixed-valent Ge centers". Journal of Solid State Chemistry. 206: 129–133. Bibcode:2013JSSCh.206..129Y. doi:10.1016/j.jssc.2013.07.036.
  25. Zhang, Guodong; Li, Peizhou; Ding, Junfeng; Liu, Yi; Xiong, Wei-Wei; Nie, Lina; Wu, Tom; Zhao, Yanli; Tok, Alfred Iing Yoong; Zhang, Qichun (2014-10-06). "Surfactant-Thermal Syntheses, Structures, and Magnetic Properties of Mn–Ge–Sulfides/Selenides". Inorganic Chemistry. 53 (19): 10248–10256. doi:10.1021/ic501282d. ISSN   0020-1669. PMID   25208101.
  26. 1 2 3 4 5 Liu, Guang-Ning; Guo, Guo-Cong; Wang, Ming-Sheng; Cai, Li-Zhen; Huang, Jin-Shun (November 2010). "Five dimeric thiogermanates with transition metal complexes of multidentate chelating amines: Syntheses, structures, magnetism and photoluminescence". Journal of Molecular Structure. 983 (1–3): 104–111. Bibcode:2010JMoSt.983..104L. doi:10.1016/j.molstruc.2010.08.039.
  27. 1 2 Ji, Bingheng; Pandey, Krishna; Harmer, Colin P.; Wang, Fei; Wu, Kui; Hu, Jin; Wang, Jian (29 June 2021). "Centrosymmetric or Noncentrosymmetric? Transition Metals Talking in K 2 TGe 3 S 8 (T = Co, Fe)". Inorganic Chemistry. 60 (14): 10603–10613. doi:10.1021/acs.inorgchem.1c01149. OSTI   1810574. PMID   34185995. S2CID   235685892.
  28. 1 2 3 4 5 6 7 8 9 10 Lichte, Jessica; Näther, Christian; Bensch, Wolfgang (2014-05-02). "Polymorphism and tautomerism in [dienH 2 ][Co(dien) 2 ][Ge 2 S 6 ] leading to different hydrogen bonded networks". CrystEngComm. 16 (25): 5551–5559. doi: 10.1039/C4CE00312H . ISSN   1466-8033. S2CID   94547016.
  29. Zhou, Jian; Liu, Xing; Liang, Guoming; Liang, Weijiang; Hu, Feilong; Zhu, Ligang (January 2013). "[Ni(dien)2]3[Ge3Sb8S21]·0.5H2O: A new 2-D layered thiogermanate–thioantimonate with metal complexes as template ions". Inorganic Chemistry Communications. 27: 92–96. doi:10.1016/j.inoche.2012.10.015.
  30. 1 2 Liang, Jing-Jing; Zhao, Jing; Tang, Wei-Wei; Zhang, Yong; Jia, Ding-Xian (June 2011). "Ethylene polyamine influence on the transition metal thiogermanates: Solvothermal syntheses and characterizations of [Ni(trien)2]2Ge4S10 and [{Ni(tepa)}2(μ-Ge2S6)]". Inorganic Chemistry Communications. 14 (6): 1023–1026. doi:10.1016/j.inoche.2011.03.062.
  31. Tang, Shimei; Zhou, Jian; Liu, Xing; Xiao, Hong-Ping (June 2018). "A new 3-D cuprous thiogermanate with rare 3-D [Cu-S-Cu]n network". Materials Today Communications. 15: 88–93. doi:10.1016/j.mtcomm.2018.02.035. S2CID   103265774.
  32. Zhang, Nan; Xu, Qian-Ting; Shi, Zhi-Hui; Yang, Mei; Guo, Sheng-Ping (2022-10-31). "Characterizations and Nonlinear-Optical Properties of Pentanary Transition-Metal Oxysulfide Sr 2 CoGe 2 OS 6". Inorganic Chemistry. 61 (43): 17002–17006. doi:10.1021/acs.inorgchem.2c03283. ISSN   0020-1669. PMID   36265201. S2CID   253044751.
  33. 1 2 3 4 Gao, Lihua; Wu, Xiaowen; Xu, Jingjing; Tian, Xinyu; Zhang, Bingbing; Wu, Kui (December 2021). "Rational combination of multiple structural groups on regulating nonlinear optical property in hexagonal Ln3MGeS7 polar crystals". Journal of Alloys and Compounds. 900: 163535. doi:10.1016/j.jallcom.2021.163535. S2CID   245626019.
  34. 1 2 Liu, Yang; Li, Xiangming; Wu, Shuchang; Ma, Mengjie; Jiang, Xiaoming; Wu, Yuandong; Mei, Dajiang (2024-06-03). "A Rare Earth Chalcogenide Nonlinear Optical Crystal KLaGeS 4 : Achieving Good Balance among Band Gap, Second Harmonic Generation Effect, and Birefringence". Inorganic Chemistry. doi:10.1021/acs.inorgchem.4c00842. ISSN   0020-1669.
  35. Fedorchuk, A.O.; Lakshminarayana, G.; Tokaychuk, Y.O.; Parasyuk, O.V. (November 2013). "The crystal structure of novel silver sulphogermanate Ag10Ge3S11". Journal of Alloys and Compounds. 576: 134–139. doi:10.1016/j.jallcom.2013.04.110.
  36. Wu, Xiaowen; Hu, Yi; Pan, Hui; Su, Zhi (2016). "Na 9 Sb(Ge 2 Q 6 ) 2 (Q = S, Se): two new antimony( iii ) quaternary chalcogenides with ethane-like [Ge 2 Q 6 ] 6− ligands". RSC Advances. 6 (101): 99475–99481. doi:10.1039/C6RA22000B. ISSN   2046-2069.
  37. Feng, Mei-Ling; Kong, De-Nian; Xie, Zai-Lai; Huang, Xiao-Ying (2008-10-27). "Three-Dimensional Chiral Microporous Germanium Antimony Sulfide with Ion-Exchange Properties". Angewandte Chemie International Edition. 47 (45): 8623–8626. doi:10.1002/anie.200803406. PMID   18846520.
  38. Feng, Mei-Ling; Hu, Chun-Li; Wang, Kai-Yao; Du, Cheng-Feng; Huang, Xiao-Ying (2013). "[AEPH2][GeSb2S6]·CH3OH: a thiogermanate–thioantimonate featuring an infinite ribbon-like structure with an unusual {GeSb3S11} unit and exhibiting the ability of photocatalytic degradation of organic dye". CrystEngComm. 15 (25): 5007. doi:10.1039/c3ce40143j. ISSN   1466-8033.
  39. 1 2 Zhang, Bo; Feng, Mei-Ling; Cui, Hong-Hua; Du, Cheng-Feng; Qi, Xing-Hui; Shen, Nan-Nan; Huang, Xiao-Ying (2015-09-08). "Syntheses, Crystal Structures, Ion-Exchange, and Photocatalytic Properties of Two Amine-Directed Ge–Sb–S Compounds". Inorganic Chemistry. 54 (17): 8474–8481. doi:10.1021/acs.inorgchem.5b01181. ISSN   0020-1669. PMID   26291119.
  40. 1 2 Zhou, Jian; An, Litao; Liu, Xing; Huang, Lijun; Huang, Xijiao (2011). "Solvothermal synthesis and characterization of two 2-D layered germanium thioantimonates with transition-metal complexes". Dalton Transactions. 40 (43): 11419–11424. doi:10.1039/c1dt11280e. ISSN   1477-9226. PMID   21931916.
  41. 1 2 Zhou, Jian; Li, Rong; Ling, Xing; Chen, Rong; Hu, Feilong; Zeng, Yanfang (2013). "The first examples of thiogermanate anion [GeS 3 (SH)] 3− as a bridging ligand to a lanthanide complex". Dalton Trans. 42 (6): 1961–1964. doi:10.1039/C2DT32389C. ISSN   1477-9226. PMID   23165504.
  42. 1 2 3 4 5 6 Zhao, Rong-Qing; Zhou, Jian; Liu, Xing; Zhang, Li; Tang, Qiuling; Tan, Xiao-Feng (2014-08-19). "Solvothermal syntheses of lanthanide thiogermanates displaying three new structural moieties". RSC Advances. 4 (73): 38682. Bibcode:2014RSCAd...438682Z. doi:10.1039/C4RA07812H. ISSN   2046-2069.
  43. Bugli, G.; Carré, D.; Barnier, S. (1978-11-01). "Structure cristalline du thiogermanate d'europium Eu 3 Ge 3 S 9". Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 34 (11): 3186–3189. doi:10.1107/S0567740878010456. ISSN   0567-7408.
  44. 1 2 Tang, Shimei; Cao, Shumei; Zhou, Jian (July 2018). "A Series of Lanthanide Chalcogenidogermanates Displaying Two Types of 1-D Polymeric Chains". Journal of Cluster Science. 29 (4): 777–783. doi:10.1007/s10876-018-1402-6. ISSN   1040-7278. S2CID   103263516.
  45. Feng, Mei-Ling; Qi, Xing-Hui; Zhang, Bo; Huang, Xiao-Ying (2014). "[(Me)2NH2][BiGeS4]: the first organically directed bismuth thiogermanate with Rb+ ion exchange property". Dalton Transactions. 43 (22): 8184–8187. doi:10.1039/c4dt00173g. ISSN   1477-9226. PMID   24781350.