Names | |
---|---|
IUPAC name Cerium(III) sulfide | |
Other names
| |
Identifiers | |
3D model (JSmol) | |
ChemSpider | |
ECHA InfoCard | 100.031.445 |
EC Number |
|
PubChem CID | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
Ce2S3 | |
Molar mass | 375.73 g/mol |
Appearance | Red/burgundy/black crystals (depending on polymorph) |
Density | 5.18 g/cm3 |
Melting point | 1,840 to 1,940 °C (3,340 to 3,520 °F; 2,110 to 2,210 K) |
Boiling point | decomposes (at 2300 °C) |
insoluble | |
Solubility | soluble in warm formic or acetic acid soluble in cold dil. HCl, HNO3 or H2SO4 |
Band gap | 2.06 eV (γ-Ce2S3) |
Refractive index (nD) | 2.77 (589 nm) |
Structure | |
orthorhombic (α-Ce2S3) tetragonal (β-Ce2S3) cubic (γ-Ce2S3) | |
Thermochemistry | |
Heat capacity (C) | 126.2 J·mol−1·K−1 |
Std enthalpy of formation (ΔfH⦵298) | -1260 kJ·mol−1 |
Gibbs free energy (ΔfG⦵) | -1230 kJ·mol−1 |
Hazards | |
GHS labelling: | |
Warning | |
H315, H319, H335 | |
P261, P280, P305+P351+P338 | |
Related compounds | |
Other anions | Cerium(III) oxide, Cerium(III) selenide, Cerium(III) oxyselenide |
Other cations | Samarium(III) sulfide, Praseodymium(III) sulfide |
Related compounds | Cerium(II) sulfide, Ce3S4, Cerium disulfide, Ce2O2S |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Cerium(III) sulfide, also known as cerium sesquisulfide, is an inorganic compound with the formula Ce2S3. It is the sulfide salt of cerium(III) and exists as three polymorphs with different crystal structures. [1] [2] [3]
Its high melting point (comparable to silica or alumina) and chemically inert nature have led to occasional examination of potential use as a refractory material for crucibles, but it has never been widely adopted for this application. [2]
The distinctive red colour of two of the polymorphs (α- and β-Ce2S3) and aforementioned chemical stability up to high temperatures have led to some limited commercial use as a red pigment (known as cerium sulfide red). [3]
The oldest syntheses reported for cerium(III) sulfide follow a typical rare earth sesquisulfide formation route, which involves heating the corresponding cerium sesquioxide to 900–1100 °C in an atmosphere of hydrogen sulfide: [1] [4]
Newer synthetic procedures utilise less toxic carbon disulfide gas for sulfurisation, starting from cerium dioxide which is reduced by the CS2 gas at temperatures of 800–1000 °C: [2]
This article's factual accuracy is disputed .(September 2022) |
Polymorph | T of formation | Colour | Crystal system | Space group | Lattice constants |
---|---|---|---|---|---|
α-Ce2S3 | <900 °C | burgundy | Othorhombic | Pnma (No. 62) | a=7.63 Å, b=4.12 Å, c=15.71 Å |
β-Ce2S3 | 900–1200 °C | red | Tetragonal | I41/acd (No. 142) | a=15.37 Å, c=20.35 Å |
γ-Ce2S3 | >1200 °C | black | Cubic | I43d (No. 220) | a=8.63 Å |
Ce2S3 exists in three polymorphic forms: α-Ce2S3 (orthorhombic, burgundy colour), β-Ce2S3 (tetragonal, red colour), γ-Ce2S3 (cubic, black colour). [1] [2] [3] They are analogous to the crystal structures of the likewise trimorphic Pr2S3 and Nd2S3. [2]
Following the synthetic procedures given above will yield mostly the α- and β- polymorphs, with the proportion of α-Ce2S3 increasing at lower temperatures (~700–900 °C) and with longer reaction times. [2] [3] The α- form can be irreversibly transformed into β-Ce2S3 by vacuum heating at 1200 °C for 7 hours. Then γ-Ce2S3 is obtained from sintering of β-Ce2S3 powder via hot pressing at an even higher temperature (1700 °C). [2]
The α polymorph of cerium(III) sulfide has the same structure as α-Gd2S3. It contains both 7-coordinate and 8-coordinate cerium ions, Ce3+, with monocapped and bicapped trigonal prismatic coordination geometry, respectively. The sulfide ions, S2−, are 5-coordinate. [5] Two thirds of them adopt a square pyramidal geometry and one third adopt a trigonal bipyramidal geometry. [6]
Cerium Ce1 coordination | Cerium Ce2 coordination | Sulfur S1 coordination | Sulfur S2 coordination | Sulfur S3 coordination |
---|---|---|---|---|
The γ polymorph of cerium(III) sulfide adopts a cation-deficient form of the Th3P4 structure. 8 out the 9 metal positions in the Th3P4 structure are occupied by cerium in γ-Ce2S3, with the remainder as vacancies. This composition can be represented by the formula Ce2.667□0.333S4. The cerium ions are 8-coordinate while the sulfide ions are 6-coordinate (distorted octahedral). [5] [6]
Some reported reactions of cerium(III) sulfide are with bismuth compounds in order to form superconducting crystalline materials of the M(O,F)BiS2 family (for M=Ce). [7]
The reaction of Ce2S3 with Bi2S3 and Bi2O3 in a sealed tube at 950 °C gives the parent compound CeOBiS2:
This material is superconducting on its own, but the properties can be enhanced if it is doped with fluoride by including BiF3 in the reaction mixture. [7]
Cerium(III) and cerium(IV) sulfides were first investigated in the 1940s as part of the Manhattan project, where they were considered -but eventually not adopted- as advanced refractory materials. [2] Their suggested application was as the material in crucibles for the casting of uranium and plutonium metal. [2] [4]
Although the sulfide's properties (high melting point and large, large negative ΔfG° and chemical inertness) are suitable and cerium is a relatively common element (66 ppm, about as much as copper), the danger of the traditional H2S-involving production route and the difficulty in controlling the formation of the resulting Ce2S3/CeS solid mixture meant that the compound was ultimately not developed further for such applications. [2]
The main non-research use of cerium(III) sulfide is as a specialty inorganic pigment. [3] The strong red hues of α- and β-Ce2S3, non-prohibitive cost of cerium, and chemically inert behaviour up to high temperature are the factors which make the compound desirable as a pigment.
Regarding other applications, the γ-Ce2S3 polymorph has a band gap of 2.06 eV and high Seebeck coefficient, thus it has been proposed as a high-temperature semiconductor for thermoelectric generators. [2] A practical implementation thereof has not been demonstrated so far.
Iron(III) oxide or ferric oxide is the inorganic compound with the formula Fe2O3. It is one of the three main oxides of iron, the other two being iron(II) oxide (FeO), which is rare; and iron(II,III) oxide (Fe3O4), which also occurs naturally as the mineral magnetite. As the mineral known as hematite, Fe2O3 is the main source of iron for the steel industry. Fe2O3 is readily attacked by acids. Iron(III) oxide is often called rust, and to some extent this label is useful, because rust shares several properties and has a similar composition; however, in chemistry, rust is considered an ill-defined material, described as Hydrous ferric oxide.
Antimony trisulfide is found in nature as the crystalline mineral stibnite and the amorphous red mineral metastibnite. It is manufactured for use in safety matches, military ammunition, explosives and fireworks. It also is used in the production of ruby-colored glass and in plastics as a flame retardant. Historically the stibnite form was used as a grey pigment in paintings produced in the 16th century. In 1817, the dye and fabric chemist, John Mercer discovered the non-stoichiometric compound Antimony Orange, the first good orange pigment available for cotton fabric printing.
Lead(II) oxide, also called lead monoxide, is the inorganic compound with the molecular formula PbO. PbO occurs in two polymorphs: litharge having a tetragonal crystal structure, and massicot having an orthorhombic crystal structure. Modern applications for PbO are mostly in lead-based industrial glass and industrial ceramics, including computer components. It is an amphoteric oxide.
Iron(II,III) oxide, or black iron oxide, is the chemical compound with formula Fe3O4. It occurs in nature as the mineral magnetite. It is one of a number of iron oxides, the others being iron(II) oxide (FeO), which is rare, and iron(III) oxide (Fe2O3) which also occurs naturally as the mineral hematite. It contains both Fe2+ and Fe3+ ions and is sometimes formulated as FeO ∙ Fe2O3. This iron oxide is encountered in the laboratory as a black powder. It exhibits permanent magnetism and is ferrimagnetic, but is sometimes incorrectly described as ferromagnetic. Its most extensive use is as a black pigment (see: Mars Black). For this purpose, it is synthesized rather than being extracted from the naturally occurring mineral as the particle size and shape can be varied by the method of production.
Mercury sulfide, or mercury(II) sulfide is a chemical compound composed of the chemical elements mercury and sulfur. It is represented by the chemical formula HgS. It is virtually insoluble in water.
Bismuth(III) oxide is perhaps the most industrially important compound of bismuth. It is also a common starting point for bismuth chemistry. It is found naturally as the mineral bismite (monoclinic) and sphaerobismoite, but it is usually obtained as a by-product of the smelting of copper and lead ores. Dibismuth trioxide is commonly used to produce the "Dragon's eggs" effect in fireworks, as a replacement of red lead.
Phosphorus sulfides comprise a family of inorganic compounds containing only phosphorus and sulfur. These compounds have the formula P4Sn with n ≤ 10. Two are of commercial significance, phosphorus pentasulfide, which is made on a kiloton scale for the production of other organosulfur compounds, and phosphorus sesquisulfide, used in the production of "strike anywhere matches".
Gallium(III) oxide is an inorganic compound and ultra-wide bandgap semiconductor with the formula Ga2O3. It is actively studied for applications in power electronics, phosphors, and gas sensing. The compound has several polymorphs, of which the monoclinic β-phase is the most stable. The β-phase’s bandgap of 4.7–4.9 eV and large-area, native substrates make it a promising competitor to GaN and SiC-based power electronics applications and solar-blind UV photodetectors. Ga2O3 exhibits reduced thermal conductivity and electron mobility by an order of magnitude compared to GaN and SiC, but is predicted to be significantly more cost-effective due to being the only wide-bandgap material capable of being grown from melt. β-Ga2O3 is thought to be radiation hard which makes it promising for military and space applications.
Indium(III) sulfide (Indium sesquisulfide, Indium sulfide (2:3), Indium (3+) sulfide) is the inorganic compound with the formula In2S3.
Samarium(III) sulfide (Sm2S3) is a chemical compound of the rare earth element samarium, and sulfur. In this compound samarium is in the +3 oxidation state, and sulfur is an anion in the −2 state.
The element sulfur exists as many allotropes. In number of allotropes, sulfur is second only to carbon. In addition to the allotropes, each allotrope often exists in polymorphs delineated by Greek prefixes.
Barium borate is an inorganic compound, a borate of barium with a chemical formula BaB2O4 or Ba(BO2)2. It is available as a hydrate or dehydrated form, as white powder or colorless crystals. The crystals exist in the high-temperature α phase and low-temperature β phase, abbreviated as BBO; both phases are birefringent, and BBO is a common nonlinear optical material.
Cerium is a chemical element with the symbol Ce and atomic number 58. Cerium is a soft, ductile, and silvery-white metal that tarnishes when exposed to air. Cerium is the second element in the lanthanide series, and while it often shows the oxidation state of +3 characteristic of the series, it also has a stable +4 state that does not oxidize water. It is also considered one of the rare-earth elements. Cerium has no known biological role in humans but is not particularly toxic, except with intense or continued exposure.
Bismuth tribromide is an inorganic compound of bismuth and bromine with the chemical formula BiBr3.
Nickel sulfide is any inorganic compound with the formula NiSx. These compounds range in color from bronze (Ni3S2) to black (NiS2). The nickel sulfide with simplest stoichiometry is NiS, also known as the mineral millerite. From the economic perspective, Ni9S8, the mineral pentlandite, is the chief source of mined nickel. Other minerals include heazlewoodite (Ni3S2) and polydymite (Ni3S4), and the mineral Vaesite (NiS2). Some nickel sulfides are used commercially as catalysts.
Gallium(III) sulfide, Ga2S3, is a compound of sulfur and gallium, that is a semiconductor that has applications in electronics and photonics.
Many compounds of thorium are known: this is because thorium and uranium are the most stable and accessible actinides and are the only actinides that can be studied safely and legally in bulk in a normal laboratory. As such, they have the best-known chemistry of the actinides, along with that of plutonium, as the self-heating and radiation from them is not enough to cause radiolysis of chemical bonds as it is for the other actinides. While the later actinides from americium onwards are predominantly trivalent and behave more similarly to the corresponding lanthanides, as one would expect from periodic trends, the early actinides up to plutonium have relativistically destabilised and hence delocalised 5f and 6d electrons that participate in chemistry in a similar way to the early transition metals of group 3 through 8: thus, all their valence electrons can participate in chemical reactions, although this is not common for neptunium and plutonium.
Rhenium disulfide is an inorganic compound of rhenium and sulfur with the formula ReS2. It has a layered structure where atoms are strongly bonded within each layer. The layers are held together by weak Van der Waals bonds, and can be easily peeled off from the bulk material.
Neodymium(III) sulfide is a inorganic chemical compound with the formula Nd2S3 composed of a two neodymium atoms in the +3 oxidation state and three sulfur atoms in the +2 oxidation state. Like other rare earth sulfides, neodymium(III) sulfide is used as a high-performance inorganic pigment.
Cerium monosulfide is a binary inorganic compound of cerium and sulfur with the chemical formula CeS. This is the simplest of cerium sulfides.