Thiostannate

Last updated

Sulfidostannates, or thiostannates are chemical compounds containing anions composed of tin linked with sulfur. They can be considered as stannates with sulfur substituting for oxygen. Related compounds include the thiosilicates, and thiogermanates, and by varying the chalcogen: selenostannates, and tellurostannates. Oxothiostannates have oxygen in addition to sulfur. [1] Thiostannates can be classed as chalcogenidometalates, thiometallates, chalcogenidotetrelates, thiotetrelates, and chalcogenidostannates. Tin is almost always in the +4 oxidation state in thiostannates, although a couple of mixed sulfides in the +2 state are known,

Contents

Some thiostannate minerals are known. In nature the tin can be partly replaced by arsenic, germanium, antimony or indium. Many thiostannate minerals contain copper, silver or lead. In the field of mineralogy, these compound can be termed sulfostannates or sulphostannates.

Different cluster anions are known: [SnS4]4–, [SnS3]2–, [Sn2S5]2–, [Sn2S6]4–, [Sn2S7]6–, [Sn2S8]2–, [Sn3S7]2–, [Sn4S9]2–, [Sn5S12]4–, or [Sn4S10]4–. [2]

The number of sulfur atoms coordinated around the tin atom is most commonly four. However there are also complexes with five or six sulfur atoms surrounding the tin. The behaviour for selenium and tellurium differs as only five selenium or four tellurium atoms can bind to a tin atom. The smaller germanium atom can only accommodate four sulfur atoms. For lead it is hard for it to be in the +4 oxidation state. The SnSn polyhedrons can be standalone in strongly alkaline conditions, or at higher concentrations or less alkaline can condense together. Polyhedra shapes are tetrahedron for four, trigonal bipyramid for five, and octahedron for six sulfur atoms. The polyhedra can be connected at a vertex (corner), or at an edge. Where connected at an edge, four membered rings of -SnSSnS- with internal angles close to 90°. [3] [Sn2S7]6– is corner bridged. Tetrahedra linked by at the corner by a disulfur bridge are unknown. [3]

Sn10O4S208- is a supertetrahedron made from 1, 3 and 6 tin atoms connected by oxygen on the interior and sulfur on the surface. [3]

For anions with formula SnxSy the condensation ratio c is given by xy. It can vary from 14 to just below 1/2. [3]

Synthesis

The first human production of a thiostannate heated tin oxide with sodium carbonate and sulfur: [4]

2SnO2 + 2Na2CO3 + 9S → 2Na2SnS3 + 2CO2 + 3SO2

Transition metal complexes may be prepared by crystallisation from the ligand solvent. [4]

Copper(II) is normally reduced by sulfide S2- in thiostannates to copper(I). [5]

Anions

formulanamecoordinationdimensionalitydescription
[SnS4]4−40tetrahedra
[Sn2S6]4−bis(μ-sulfido)-tetrathiolato-di-tin40edge shared
[Sn3S9]6−1,3,5,2,4,6-trithiatristanninane-2,2,4,4,6,6-hexakis(thiolate)406 membered ring
[Sn4S10]4-40tetrameric adamantane-like : tetrahedron of tetrahedra, 6 bridging sulfur, 4 terminal sulfur

Reactions

Some hydrates are unstable, where water reacts with the sulfide to make hydrogen sulfide gas.

List

formulasystemspace groupunit cell Åvolumedensitycomment
Li4SnS4orthorhombicPnmaa=13.812 b=7.962 c=6.370 [6]
[Li8(H2O)29][Sn10O4S20]·2H2OtriclinicP1a = 11.232, b = 13.097, c = 23.735, α = 102.73°, β = 90.43°, γ = 93.44°, Z = 23399oxothiostannate [7]
(NH4)4Sn2S6·3H2OorthorhombicP41212a =8.56294 b =8.56294 c= 22.7703 [8]
(NH4)6Sn3S9·1.3H2OmonoclinicC2a 16.9872 b 10.54777 c 21.0871 β 108.0389°3592.62.154colourless [9]
[(CH3)3NH]2Sn3S7 [3]
[(CH3)4N]2Sn3S7·H2O [3]
[(CH3)4N]4Sn4S10 [8]
[(CH3CH2)4N]2Sn3S7 [3]
[(CH3CH2CH2)4N]2Sn4S9 [3]
[(CH3CH2CH2CH2)4N]2Sn4S9 [3]
[(CH3CH2CH2)4N][(CH3)3NH]Sn4S9 [3]
(C12H25NH3)4Sn2S6·2H2O [3]
[dabcoH]2Sn3S7 [3]
(Et4N)2Sn(S4)3 [3]
(Et4N)2Sn(S4)2(S6) [3]
((CH3C(NH2)2)8Sn2S6SnS4monoclinicC 1 2/m 1a=23.7739 b=16.0647 c=11.8936 β=99.029 Z=44486.11.702colourless [9]
((CH3)2NH2)(NH4)SnS3 dimethylammonium ammoniumorthorhombicP212121a=5.9393 b=12.1816 c=12.4709 Z=4902.262.054colourless [9]
(DBNH)2Sn3S6 DBN=1,5-diazabicyclo[4.3.0]non-7-eneSn(II) and Sn(IV) [10]
(1AEP)2Sn3S7 1AEP = 1-(2-aminoethyl) piperidineorthorhombicP212121a=13.2299 b= 22.2673 c=9.0772 Z=42674.1pale yellow [11]
SnS2·enmonoclinicC2/ca 15.317 b 10.443 c 12.754, β 93.62° [12]
[enH]4[Sn2S6entriclinicP1a 9.8770 b 9.9340 c 15.4230, α 72.630° β 86.220° γ 81.380° [12]
Na2SnS3R3ma=3.834 c=19.876 Z=22533.43 [4] [13]
Na4SnS4tetragonalP421ca=7.837 c=6.9504272.64 [13]
Na4Sn2S6 [3]
Na4Sn2S6·14H2OtriclinicP1a=10.114 b=7.027 c=9.801 α=108.30 β=92.18 γ=91.11 Z=16631.95 [2]
Na4SnS4·14H2OmonoclinicC2/ca=8.622 b=23.534 c=11.347 β=110.53 Z=421561.82 [13]
Na4Sn3S8 [3]
Na5[SnS4]Cl·13H2OmonoclinicP21/ma=8.4335 b=11.4958 c=11.5609 β=91.066 Z=21120.631.872 [2]
Na4Sn2S6·5H2O [3]
Na6Sn2S7C2/ca=9.395 b=10.719 c=15.671 β=109.97 Z=414832.69 [13]
Mg2SnS4orthorhombicPnmaa=12.93 b=7.52 c=6.16 Z=45993.28 [13]
Na2MgSnS4R3ma 3.7496 b 3.7496 c 19.9130 [14]
(Ph4P)2Sn(S4)3 [3]
K2SnS3·2H2O [3]
K2SnS3·2H2OorthorhombicPnmaa=6.429 b=15.621 c=10.569 Z=410612.06 [13]
K2Sn2S5 [3]
K2Sn3S7·H2O [3]
[K4(H2O)4][SnS4] [15]
Ca2SnS4orthorhombicPnmaa=13.74 b=8.23 c=6.44 Z=47282.99 [13]
[H2tepa][VIII(tepa)(μ-Sn2Q6)]2orthorhombicAbm2a =7.7486 b =40.410 c =16.745 [16]
Mn2SnS4tetragonalI41/aa=7.408 c=10.41 Z=85714.15 [13]
[Mn(en)3]2[Sn2S6]monoclinicC2/ca=15.138 b=10.6533 c=23.586 β=118.42 Z=43345.21.787colourless [5] [17]
[Mn(en)3]2Sn2S6·2H2OmonoclinicP21/ca=10.129, b=15.746, c=11.524, β=102.36° Z=21795.51.732 [18]
[Mn(en)2]2(μ-en)[Sn2S6]triclinica=9.0017 b=9.7735 c=10.8421 α=60.38° β=67.23° γ=70.25°752.38 [16]
[Mn(dien)2]2Sn2S6monoclinicP21/ca=12.48 12, b= 9.3760, c=17.7617, β=121.752°, Z=2,1767.51.789 [18]
[Mn(tren)]2Sn2S6triclinicP1a 7.653 b 8.088 c 12.200, α 97.27° β 104.06° γ 108.80° Z=1676.02.044yellow [5] [19]
[Mn(tren)(H2O)][Mn(baen)]3Mn4Sn6S20∙9H2OorthorhombicP213a =21.404 b =21.404 c= 21.404super tetrahedron [20]
{Mn(tepa)}2(μ-Sn2S6)tetragonalI41/aa=25.977 c=10.041 Z=867751.800yellow [19]
{[Mn(trien)]2[SnS4]} [5]
{[Mn(C6H18N4)]2SnS4}·4H2OmonoclinicP21/ca 10.8446 b 20.974 c 13.2746 β 113.487° [21]
{[Mn(phen)2]22-Sn2S6)}monoclinicP21/na =10.8230 b=9.8940 c=24.811 β=91.356° [22]
{[Mn(phen)2]22-Sn2S6)}·phentriclinicP1a=10.0642 b=10.6249 c=13.693, α=71.700° β=81.458° γ=84.346° [22]
{[Mn(phen)2]2[Sn2S6]}·phen·H2O phen = 1,10-phenanthrolinetriclinicP1a=11.3203 b=12.1436 c=12.7586, α=113.200° β=90.908° γ=110.974° [5] [22]
[Mn(phen)]2(SnS4)·H2OmonoclinicC2/ma=16.146 b=19.262 c=9.938 β=124.970 Z=42532.61.928red chain [23]
{[Mn(phen)2]2[μ-η22-SnS4]2[Mn(phen)]2}·H2OtriclinicP1a=10.8703 b=12.5183 c=14.9644, α=103.381° β=108.390° γ=101.636° [22]
{[Mn(2,2′-bipy)2]2[Sn2S6]} [24]
(1,4-dabH)2MnSnS4 1,4-dab = 1,4-diaminobutaneorthorhombicFdd2a = 22.812, b = 24.789, c = 6.4153, Z = 83627.8 [25]
Li4MnSn2Se7monoclinicCca=18.126 b=7.2209 c=10.740 β=93.43 Z=41403.24.132orange [26]
Fe2SnS4tetragonalI41/aa=7.308 c=10.338 Z=45524.32 [13]
{[Fe(tepa)]2[Sn2S6]}tetragonalI41/a [5] [27]
{[Fe(1,2-dach)2][Sn2S6]}·2(1,2-dachH) [5]
{[Fe(phen)2]2[Sn2S6]}·phen·H2O [5]
[Co(en)3]2[Sn2S6]orthorhombicPbcaa=15.640 b=11.564 c=18.742 Z=42289.71.779yellow [5] [17]
[Co(dien)2]2[Sn2S6] [5]
[Co2(cyclam)2Sn2S6]·2H2O [28]
[Co(tren)]2Sn2S6monoclinicC2/ca=12.228 b=9.7528 c=23.285 β=102.902706.8 [5] [16]
{[Co(cyclam)]2[Sn2S6]}n·2nH2O cyclam = 1,4,8,11-tetraazacyclotetradecane [5]
{[Co(tepa)]2[Sn2S6]} tepa=tetraethylenepentaminetetragonalI41/aa=25.742 c=9.8986558 [5] [27] [16]
{[Co(phen)2]2[Sn2S6]}·phen·H2O [5]
[Co(2-(aminomethyl)pyridine)3]2Sn2S6·10H2O (2amp)monoclinicP21/ca=10.1443 b=14.6124 c=18.8842 β=90.601° Z=22799.11.633yellow [29]
[Co(trans-1,2-diaminocyclohexane)3]2Sn2S6·8H2O (dach)monoclinicP21/na=12.6521 b=11.7187 c=20.4386 β=91.262° Z=23029.61.509red [29]
Ni6SnS2 Butianite tetragonalI4/mmma = 3.650, c = 18.141 Z=2241.77.62opaque [30]
[Ni(en)3]2[Sn2S6] [5]
[Ni(dap)3]2[Sn2S6]·2H2O dap=1,2-diaminopropanetriclinicP1a=9.9046 b=10.527 c=11.319 α =72.13° β =85.19° γ =63.63°1004.5 [5] [16]
[Ni(1,2-dach)3]2[Sn2S6]·4H2O 1,2-dach = 1,2-diaminocyclohexane [5]
[Ni(dien)2]2[Sn2S6] [5]
{[Ni(cyclen)]6[Sn6S12O2(OH)6]}·2(ClO4)·19H2O

cyclen = 1,4,7,10-tetraazacyclododecane

[31]
[Ni(cyclen)(H2O)2]4[Sn10S20O4]·~13H2O [31]
{[Ni(cyclen)]6[Sn6S12O2(OH)6]}·2(ClO4)·19H2OmonoclinicC2/ca=25.7223 b=15.6522 c=29.070 β=105.879 Z=4112571.863oxothiostannate [32]
[Ni(2amp)3]2[Sn2S6]·9.5H2O 2amp = 2-(aminomethyl)pyridinemonoclinicP21/na=18.7021 b=14.6141 c=20.2591 β=97.696 Z=45487.21.655purple [4]
[Ni(aepa)2]2[Sn2S6] aepa=N-2-aminoethyl-1,3-propandiamine [5]
[Ni(tren)]2Sn2S6monoclinicC2/ca=23.371 b=8.231 c=14.274 β =107.230 Z=42622.62.127 [5] [33]
[Ni(tren)2]2[Sn2S6]·8H2OorthorhombicP42/na=26.1885 b=26.1885 c=11.1122 [5] [34]
[Ni(tren)(2amp)]2[Sn2S6]triclinicP1a =10.2878 b =11.1100 c =11.4206, α =84.740° β =84.395° γ =79.093° [5] [34]
[Ni(tren)(2amp)]2[Sn2S6]·10H2OmonoclinicP21/na =12.1933 b =13.4025 c =14.8920 β= 103.090° [35]
[Ni(tren)(en)]2[Sn2S6]·2H2OmonoclinicP21/na 12.7041 b 9.8000 c 15.3989, β 108.843° [35]
[Ni(tren)(en)]2[Sn2S6]·6H2OmonoclinicP21/na 12.5580 b 9.7089 c 16.0359, β 91.827° [35]
[Ni(tren)(1,2-dach)]2[Sn2S6]·3H2OtriclinicP1a 9.8121 b 10.0080 c 12.422, α 86.38° β 79.65° γ 65.72° [35]
[Ni(tren)(1,2-dach)]2[Sn2S6]·4H2OmonoclinicP21/na 10.7119 b 19.0797 c 11.1005, β 104.803° [35]
{[Ni(cyclam)]2[Sn2S6]}·2H2O [5]
{[Ni(tepa)]2[Sn2S6]}monoclinicP21/n [5] [27]
{[Ni(phen)2]2[Sn2S6]}·2,2′-bipymonoclinicP21/na=10.5715 b=9.9086 c=24.9960 β=92.800 Z=22615.171.809deep red [5] [36]
{[Ni(phen)2]2Sn2S6}·4,4′-bipy·½H2O 4,4′-bipy = 4,4′-bipyridinemonoclinicC2/ca=18.3431 b=19.4475 c=15.0835 β=95.556 Z=45355.41.789dark red-brown [36]
{[Ni(phen)2]2[Sn2S6]}·phen·H2O [24]
[Ni(L1)][Ni(L1)Sn2S6]n·2H2O L1 = 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecanemonoclinicP21/c [37]
[Ni(L2)]2[Sn2S6]·4H2O L2 = 1,8-diethyl-1,3,6,8,10,13-hexaazacyclotetradecanetriclinicP1 [37]
[Ni(tren)(ma)(H2O)]2[Sn2S6]·4H2O ma = methylaminemonoclinicP21/na=11.1715 b=10.5384 c=15.8594 Z=21827.451.835 [33]
[Ni(tren)(1,2-dap)]2[Sn2S6]·2H2OmonoclinicP21/na=12.9264 b=10.1627 c=15.6585 Z=21889.81.799 [33]
[Ni(tren)(1,2-dap)]2[Sn2S6]·4H2OmonoclinicC2/ca =14.3925 b=15.1550 c=18.9307, β=99.108° [35]
[Ni(2amp)3]2[Sn2S6]·9.5H2O 2amp = 2-(aminomethyl)pyridinemonoclinicP21/na=18.7021 b=14.6141 c=20.2591 Z=45487.231.655purple [4]
Cu2SnS3 Mohite monoclinica=23.10 b=6.25 c=6.25 β=101.0°4.69greenish grey [13] [38]
Cu3SnS4 Kuramite tetragonalI42ma = 5.445, c = 10.75, Z = 2318.724.56 [39]
Cu4SnS4orthorhombicPnmaa=13.70 b=7.750 c=6.454 Z=46854.96 [13]
Cu4SnS6 Erazoite rhombohedralR3ma = 3.739, c = 32.941, Z = 24.53black [40]
Cu4Sn7S16monoclinica=12.75 b=7.34 c=12.71 β=109.5 Z=211214.74 [13]
(DBUH)CuSnS3 DBU = 1,8-diazabicyclo[5.4.0]undec-7-enemonoclinicP21/na=9.254 b=8.6190 c=18.135, β=92.80° [41]
(1,4-dabH2)Cu2SnS4 1,4-dab = 1,4-diaminobutanetetragonalP42/na=14.539 c=11.478 [42]
(enH)6Cu40Sn15S60 en=ethylenediaminecubicPn3na=25.260 Z=4161192.727black [43]
(enH)3Cu7Sn4S12trigonalR3ca=13.532 c=28.933 Z=645883.23red [43]
[H2en]2[Cu8Sn3S12] [5]
(trenH3)Cu7Sn4S12tren = tris(2-aminoethyl)amine)trigonalR3ca=13.1059 c=29.347 Z=64365.43.317 [43]
[dienH2][Cu2Sn2S6] [5]
[DBUH][CuSnS3] DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene [5]
[1,4-dabH2][Cu2SnS4] [5]
{[Cu(cyclam)]2[Sn2S6]}·2H2O cyclam=1,4,8,11-tetraazacyclotetradecanetriclinicP1a=9.0580 b=9.9419 c=10.2352, α=97.068° β=94.314° γ=101.514° [5]
(DBNH)2Cu6Sn2S8 DBN=1,5-diazabicyclo[4.3.0]non-7-ene [10]
[Co(2-(aminomethyl)pyridine)3]2 Sn2S6·10H2OmonoclinicP21/ca=10.1443 b=14.6124 c=18.8842 β=90.601° Z=22799.11.633yellow; unstable [44]
[Co(trans-1,2-diaminocyclohexane)3]2Sn2S6·8H2OmonoclinicP21/na=12.6521 b=11.7187 c=20.4386 β=91.262° Z=23029.61.509red [44]
Na4Cu32Sn12S48·4H2OcubicFm3ca = 17.921 z = 13black; absorption edge 2.0 eV [45]
CuAlSnS4cubica=10.28 Z=810744.17 [13]
K11Cu32Sn12S48·4H2OcubicFm3ca = 18.0559 z = 14.75black; absorption edge 1.9 eV [45]
Cu2MnSnS4tetragonala=5.49 c=10.72 Z=23234.41 [13]
Cu2FeSnS4 Stannite Ferrokësterite tetragonalI42ma = 5.4432, c = 10.7299 Z=2317.91grey [46]
Cu2FeSn3S8tetragonalI41/aa=7.29 c=10.31 Z=25484.82 [13]
Cu6Fe2SnS8 Mawsonite TetragonalP4m2a = 7.603, c = 5.358 Z=13094.65brownish orange [47]
Cu6FeSn2S8 Chatkalite TetragonalP4m2a = 7.61, c = 5.373 Z=1311.15.00 [48]
Cu2CoSnS4TetragonalI42ma=5.402 c=10.805 Z=23154.56 [13]
Cu2NiSnS4a=5.425 Z=11604.49 [13]
Cu13VSn3S16 Nekrasovite isometrica=10.731,235brown [49]
[Zn(en)3]2[Sn2S6]orthorhombicPbcaa=15.452 b=11.524 c=18.614 Z=43315.31.845colourless [5] [17]
{Zn(tren)}2(μ-Sn2S6)monoclinicC2/ca 12.214 b 9.726 c 23.209 β 102.732°2689.32.107light yellow [19] [50]
Cu2ZnSnS4 Kësterite tetragonalI4a = 5.427, c = 10.871 Z=2320.184.55greenish black [51]
Cu6+Cu22+(Fe2+,Zn)3Sn2S12 Stannoidite orthorhombica = 10.76, b = 5.4, c = 16.09934.94.68brass [52]
Cu3(V,Ge,Sn)S4 Ge-Sn-Sulvanite361 [53]
SnGeS3 Stangersite monoclinicP21/ba = 7.270, b = 10.197, c = 6.846 β = 105.34° Z=44893.98orange
Rb4SnS4 [3]
Rb4Sn2S6 [3]
Rb2Sn3S7·2H2O [3]
Rb2Cu2SnS4orthorhombicIbama=5.528 b=11.418 c=13.700 Z=48654.185band gap 2.08 eV [54]
Rb2Cu2Sn2S6monoclinicC2/ca=11.026 b=11.019 c=20.299 β=97.79 Z=824443.956band gap 1.44 eV [54]
Rb2ZnSn3S8 [55]
[Rb4(H2O)4][SnS4] [15]
Sr3MnSn2S8cubicI43da = 14.2287 Z = 82880.73.743dark green [56]
Cu2SrSnS4trigonalP31a = 6.29, c = 15.57 Z=35344.31 [57] [13]
Sr6Cu4Sn4S16cubicI43da=13.98227344.295yellow [58]
Sr6Cu2FeSn4S16cubicI43da=14.1349band gap 1.53 eV [59]
SrSnS3orthorhombicPnmaa=8.264 b=3.867 c=14.116 Z=44514.45 [13]
[Y2(dien)4(μ-OH)2]Sn2S6monoclinicP21/na=11.854 b=11.449 c=13.803 β=97.978 Z=218551.888light yellow [60]
α-Ag8SnS6cubica=21.439842 [13]
β-Ag8SnS6cubica=10.851277 [13]
Ag8SnS6 Canfieldite orthorhombica = 15.298, b = 7.548, c = 10.699 Z=41,235.46.311metallic [61]
Na3AgSnS4monoclinicP21/ca 8.109 b 6.483 c 15.941, α 90° β 103.713double chain [62]
AgCrSnS4cubica=10.74 Z=812394.92 [13]
Ag2MnSnS4Agmantinite orthorhombica = 6.632, b = 6.922, c = 8.156 Z=24.574orange [63]
Ag2ZnSnS4 Pirquitasite tetragonalI4a = 5.78, c = 10.82361black [64]
Ag2(Fe2+,Zn)SnS4 Hocartite tetragonalI42ma = 5.74, c = 10.96 Z=23614.77brownish grey [65]
Ag1+(Fe2+0.5Sn4+1.5)S4 Toyohaite tetragonalgrey [66]
[enH][Cu2AgSnS4]orthorhombicPnmaa=19.7256 b=7.8544 c= 6.5083 Z=41008.33.577red [67]
Ag2SrSnS4orthorhombica=7.127 b=8.117 c=6.854 Z=23975.02 [13]
Sr6Ag4Sn4S16cubicI43da=14.2219 Z=42876.64.491yellow [58]
Sr6Ag2FeSn4S16cubicI43da=14.2766band gap 1.87 eV [59]
[1,4-dabH2][Ag2SnS4] 1,4-dab = 1,4-diaminobutanetetragonalP42/na = 14.7847, c = 11.9087, Z = 82603.1 [5] [68]
[H2en][Ag2SnS4] [5]
[CH3NH3]2Ag4SnIV2SnIIS8orthorhombicPnmaa =19.378 b =7.390 c =13.683 Z=419593.756Orange Sn(II) [69]
[CH3NH3]6Ag12Sn6S21monoclinicP21/ca =18.8646 b =19.9115 c =14.3125 β 100.117° [70]
[(Me)2NH2]3[Ag5Sn4Se12]tetragonalP421ma=13.998 c=8.685 Z=21701.94.403dark red [71]
[enH][Cu2AgSnS4] [5]
Cu2CdSnS4I42ma=5.402 c=10.86 Z=23384.77 [13]
Ag2CdSnS4Cmc21a=4.111 b=7.038 c=6.685 Z=11934.95 [13]
Cu2(Cd,Zn,Fe)SnS4 Černýite tetragonalI42ma = 5.48, c = 10.828 Z=43264.76metallic [72]
CuInSnS4a=10.50 Z=811584.91 [13]
AgInSnS4a=10.16 Z=810484.59 [13]
(Cu,Fe,Zn,Ag)3(Sn,In)S4 Petrukite orthorhombica = 7.66, b = 6.43, c = 6.26308brown [73]
(Cu,Zn,Fe)3(In,Sn)S4 Sakuraiite isometrica = 5.46 Z=1162greenish grey [74]
Sn2S3orthorhombicPnmaa=8.864 b=3.7471 c=14.020 Z=44664.76 [13]
Cs4SnS40d [3]
Cs2Sn3S7·0.5S82d [3]
Cs4Sn5S12·2H2O2d [3]
[Cs4(H2O)3][SnS4] [15]
Cs2Sn(S4)2(S6) [3]
Cs8Sn10O4S20·13H2O [3]
[Cs10(H2O)18][Mn4(μ4-S)(SnS4)4] [15]
Cs2ZnSn3S8monoclinicP21/na 7.5366 b 17.6947 c 12.4976, β=94.830° Z=41660.73.775layered, band gap 3. eV [55]
[Ba2(H2O)11][SnS4] [15]
Li2Ba6MnSn4S16cubicI43da=14.6080 Z=43117.34.007light yellow [42]
Ag2Ba6MnSn4S16cubicI43da=14.7064 Z=43180.74.349yellow [42]
Ag2BaSnS4orthorhombicI222a =7.127 b =8.117 c =6.854 Z=2black [75]
Ba3Ag2Sn2S8 [76]
BaSnS2Sn(II) [77]
BaSn2S3Sn(II) [77]
BaSnS3orthorhombicPnmaa=8.527 b=3.933 c=14.515 Z=44874.8 [13]
BaSnS3monoclinicC2/cCca=24.49 b=6.354 c=23.09 β=90.15 Z=2835934.55 [13]
α-Ba2SnS4monoclinicP21/ca=8.481 b=8.526 c=12.280 β=112.97 Z=48184.24 [13]
β-Ba2SnS4orthorhombicPnmaa=17.823 b=7.359 c=12.61316544.18 [13]
Ba3Sn2S7monoclinicP21/ca=11.073 b=6.771 c=18.703 β=100.77 Z=413784.21 [13]
K2BaSnS4R3ca 25.419 c 7.497band gap 3.09 eV; SHG 0.5×AgGaS2 [78]
Ba6Cu2FeSn4S16cubicI43da=14.5260band gap 1.2 eV [59]
Ba6Cu2NiSn4S16cubicI43da=14.511band gap 0.82 eV [59]
Ba6Li2ZnSn4S16cubicI43da=14.5924 [79]
Ba6Ag2ZnSn4S16cubicI43da=14.6839 [79]
BaCdSnS4orthorhombicFdd2a=21.57 b=21.76 c=13.110 Z=3261524.290yellow [80]
Ba3CdSn2S8cubicI43da=14.723 [81]
Ba6CdAg2Sn4S16cubicI43da=14.725 [81]
La2SnS5orthorhombicPbama=11.22 b=7.915 c=3.97 Z=23525.26 [13]
[La(dien)3]2[Sn2S6]Cl2band gap 3.25 eV [82]
La(peha)(μ–SnS4H) peha=pentaethylenehexaminetriclinicP1a 8.609 b 9.327 c 14.649, α 79.2° β 85.5° γ 63.74° [83]
BaCeSn2S6orthorhombicPmc21a 4.0665 b 19.859 c 11.873 [84]
BaPrSn2S6orthorhombicPmc21a 4.0478 b 19.8914 c 11.9303 [84]
BaNdSn2S6orthorhombicPmc21a 4.0098 b 19.761 c 11.841 [84]
[Nd2(en)62-OH)2]Sn2S6monoclinicP21/na =10.176, b =11.387, c=15.018, β =97.869° [85]
Nd(peha)(μ–SnS4H)triclinicP1a 8.621 b 9.372 c 14.656, α 78.28° β 84.33° γ 63.32° [83]
{Nd(tepa)(μ–OH)}2(μ–Sn2S6)]·H2O tepa=tetraethylenepentaminemonoclinicC2/ca=21.537 b=12.863 c=17.697 β=124.308° [83]
[Nd(dien)3]2[(Sn2S6)Cl2] dien = diethylenetriaminemonoclinicP21/na = 11.672, b = 15.119, c = 14.157, β = 96.213°, Z = 42483.6 [86]
[Nd(dien)3]2[(Sn2S6)(SH)2]monoclinicP21/na = 11.719, b = 15.217, c = 14.221, β = 95.775°, Z = 42523.1 [86]
(tetaH)2[Eu2(teta)2(tren)2(μ-Sn2S6)]Sn2S6triclinicP1a=9.886 b=10.371 c=17.442 α=89.78 β=88.00 γ=85.14 Z=11780.81.898light yellow [60]
[Eu2(tepa)2(μ-OH)2(μ-Sn2S6)](tepa)0.5·H2O tepa = tetraethylene-pentaminemonoclinicC2/ca=19.803 b=14.998 c=17.800 β=126.57 Z=442461.970colourless [60]
[{Eu(en)3}2(μ-OH)2]Sn2S6monoclinicP21/na = 10.116, b = 11.379, c = 14.949, β = 98.209°, Z=21703.1 [87]
[{Eu(en)3}2(μ-OH)2]Sn2Se6monoclinicP21/na = 10.136, b = 11.771, c = 15.423, β = 99.322°, Z = 21815.8 [87]
[Eu(dien)3]2[(Sn2S6)(SH)2]monoclinicP21/na = 11.656, b = 15.168, c = 14.173, β = 95.682°, Z = 22493.4 [87]
(tetaH)2[Sm2(teta)2(tren)2(μ-Sn2S6)]Sn2S6triclinicP1a=9.920 b=10.382 c=17.520 α=89.91 β=88.07 γ=85.23 Z=11797.11.877light yellow [60]
{Sm(tepa)(μ–OH)}2(μ–Sn2S6)]·H2OmonoclinicC2/ca 21.487 b 12.8199 c 17.716 β 124.675° [83]
[Sm2(en)6(μ2-OH)2]Sn2S6monoclinicP21/na 10.129 b 11.377 c 14.962, β 98.128° [88]
[Sm(dien)3]2[(Sn2S6)Cl2]monoclinicP21/na 11.631 b 15.091 c 14.1420 β 96.202° [88]
[Sm(dien)3]2[(Sn2S6)(SH)2]monoclinicP21/na 11.698 b 15.212 c 14.219, β 95.654° [88]
[Sm(trien)(tren)(Cl)]2Sn2S6 · entriclinicP1a 10.320 b 10.491 c 13.791, α 100.524° β 91.930° γ 119.083° [88]
{Gd(tepa)(μ–OH)}2(μ–Sn2S6)]·H2OmonoclinicC2/ca 21.455 b 12.804 c 17.735 β 124.81° [83]
[Gd2(en)62-OH)2]Sn2S6monoclinicP21/na =10.1053 b =11.357 c =14.924, β = 98.346° [85]
[Gd(dien)3]2[(Sn2S6)Cl2] dien = diethylenetriaminemonoclinicP21/na =11.662, b =15.168. c 14.185, β =95.696° [85]
{Dy(tepa)(μ–OH)}2(μ–Sn2S6)]·H2OmonoclinicC2/ca 21.363 b 12.717 c 17.654 β 124.915° [83]
[Hen]2[La(en)4(CuSn3S9)]0.5 en [89]
[Hen]2[Ce(en)4(CuSn3S9)]0.5 en [89]
[Hen]4[Nd(en)4]2[Cu6Sn6S20]3 en [89]
[enH]4[Sm(en)4]2[Cu6Sn6S20]·3enmonoclinicC2/ma 14.257 b 24.242 c 13.119 β 92.223° [90]
[Hen]4[Gd(en)4]2[Cu6Sn6S20]3 en [89]
[enH]4[Ho(en)4]2[Cu6Sn6S20]·3enmonoclinicC2/ma 14.3859 b 24.361 c 13.175, β 93.526° [90]
EuCu2SnS4orthorhombicAma2a=10.4793, b=10.3610, c=6.4015, Z=4 [91] [92]
[Hen]4[Er(en)4]2[Cu6Sn6S20]3 en [89]
[Hen]4[Er(en)4]2[Ag6Sn6S20]·3enmonoclinicC2/ma 14.557 b 24.397 c 13.412 β 94.42° [93]
[Hen]4[Tm(en)4]2[Ag6Sn6S20]·3enmonoclinicC2/ma 14.517 b 24.380 c 13.422 β 94.46° [93]
[Hen]4[Yb(en)4]2[Ag6Sn6S20]·3enmonoclinicC2/ma 14.536 b 24.397 c 13.397, β 94.63° [93]
Cu6SnWS8 Kiddcreekite isometricF43ma = 10.8178 Z=41265.94.934grey [94]
PtSnS Bowlesite orthorhombicPca21a = 6.12 Å, b = 6.12 Å, c = 6.10 Å Z=4228.4710.06metallic [95]
(Pd,Pt)5(Cu,Fe)4SnTe2S2 Oulankaite tetragonala = 9.044, c = 4.937 Z=2403.810.27metallic
K2Au2SnS4triclinicP1a=8.212 b=11.019 c=7.314 α=97.82° β=111.72° γ=72.00° Z=2483.24.941band gap 2.75 eV [96] [54]
K2Au2Sn2S6tetragonalP4/mmca=7.968 c=19.200 Z=412194.914band gap 2.30 eV [96] [54]
Cs2Au2SnS4orthorhombicFddda = 6.143 b = 14.296 c = 24.578 Z = 42158.4 [96]
Ba[Au2SnS4]orthorhombicC2221a=6.6387 b=11.0605 c=10.9676 Z=1805.326.418red; blue-green luminescent [96]
K2Hg3Sn2S8 [97]
Cu2HgSnS4 Velikite tetrahedralI42ma = 5.55, c = 10.913365.450dark grey [98]
SrHgSnSe4 [99]
BaHgSnSe4orthorhombicFdd2a 22.441 b 22.760 c 13.579 [99]
EuHgSnS4Ama2a=10.3730 b=10.4380 c=6.5680SHG 1.77×AgGaS2 [100]
Tl4SnS40d
Tl2SnS31d
Tl2Sn2S53d
Tl4Sn5S123d
PbSnS2 Teallite orthorhombicPnmaa = 4.26, b = 11.41, c = 4.09198.86.36metallic
PbSnS3 Suredaite orthorhombicPnmaa=8.738 b=3.792 c=14.052 Z=44666.01metallic [13]
(Pb,Sn)12.5Sn5FeAs3S28 Coiraitemonoclinica = 5.84, b = 5.86, c = 17.32 β = 94.14° Z=45915.92dark grey [101]
Fe2+(Pb,Sn2+)6Sn4+2Sb2S14 Franckeite triclinicP1a = 46.9, b = 5.82, c = 17.3 α = 90°, β = 94.66°, γ = 90° Z=847015.90black [102]
Pb25.7Sn8.3Mn3.4Sb6.4S56.2 Ramosite monoclinica = 5.82, b = 5.92, c = 17.65 β = 99.1°600 [103]
Pb3Sn4FeSb2S14 Cylindrite triclinicP15.46black [104]
Pb6Sn3FeSb3S16 Potosíite triclinicgrey
(Pb,Ag)4Sn4FeSb2S15 Incaite monoclinic [105]
Pb2Fe2Sn2Sb2S11 Plumbostannite dark grey [106]
Ba5Pb2Sn3S13orthorhombicPnma [107]
Pb2SnInBiS7 Abramovite triclinicP1a = 23.4, b = 5.77, c = 5.83 α = 89.1°, β = 89.9°, γ = 91.5°786.79metallic [108]
Pb8Sn7Cu3(Bi,Sb)3S28 Lévyclaudite triclinicP15.71grey [109]

Related Research Articles

The phosphidosilicates or phosphosilicides are inorganic compounds containing silicon bonded to phosphorus and one or more other kinds of elements. In the phosphosilicates each silicon atom is surrounded by four phosphorus atoms in a tetrahedron. The triphosphosilicates have a SiP3 unit, that can be a planar triangle like carbonate CO3. The phosphorus atoms can be shared to form different patterns e.g. [Si2P6]10− which forms pairs, and [Si3P7]3− which contains two-dimensional double layer sheets. [SiP4]8− with isolated tetrahedra, and [SiP2]2− with a three dimensional network with shared tetrahedron corners. SiP clusters can be joined, not only by sharing a P atom, but also by way of a P-P bond. This does not happen with nitridosilicates or plain silicates.

The inorganic imides are compounds containing an ion composed of nitrogen bonded to hydrogen with formula HN2−. Organic imides have the NH group, and two single or one double covalent bond to other atoms. The imides are related to the inorganic amides (H2N), the nitrides (N3−) and the nitridohydrides (N3−•H).

The sulfate fluorides are double salts that contain both sulfate and fluoride anions. They are in the class of mixed anion compounds. Some of these minerals are deposited in fumaroles.

The telluride iodides are chemical compounds that contain both telluride ions (Te2−) and iodide ions (I). They are in the class of mixed anion compounds or chalcogenide halides.

Nitride fluorides containing nitride and fluoride ions with the formula NF4-. They can be electronically equivalent to a pair of oxide ions O24-. Nitride fluorides were discovered in 1996 by Lavalle et al. They heated diammonium technetium hexafluoride to 300 °C to yield TcNF. Another preparation is to heat a fluoride compound with a nitride compound in a solid state reaction. The fluorimido ion is F-N2- and is found in a rhenium compound.

The borosulfates are heteropoly anion compounds which have sulfate groups attached to boron atoms. Other possible terms are sulfatoborates or boron-sulfur oxides. The ratio of sulfate to borate reflects the degree of condensation. With [B(SO4)4]5- there is no condensation, each ion stands alone. In [B(SO4)3]3- the anions are linked into a chain, a chain of loops, or as [B2(SO4)6]6− in a cycle. Finally in [B(SO4)2] the sulfate and borate tetrahedra are all linked into a two or three-dimensional network. These arrangements of oxygen around boron and sulfur can have forms resembling silicates. The first borosulfate to be discovered was K5[B(SO4)4] in 2012. Over 75 unique compounds are known.

The nitridogermanates are chemical compounds containing germanium atoms bound to nitrogen. The simplest anion is GeN48−, but these are often condensed, with the elimination of nitrogen.

Selenogallates are chemical compounds which contain anionic units of selenium connected to gallium. They can be considered as gallates where selenium substitutes for oxygen. Similar compounds include the thiogallates and selenostannates. They are in the category of chalcogenotrielates or more broadly chalcogenometallates.

A chloride nitride is a mixed anion compound containing both chloride (Cl) and nitride ions (N3−). Another name is metallochloronitrides. They are a subclass of halide nitrides or pnictide halides.

A Phosphide chloride is a mixed anion compound containing both phosphide (P3−) and chloride (Cl) ions.

Selenidogermanates are compounds with anions with selenium bound to germanium. They are analogous with germanates, thiogermanates, and telluridogermanates.

Sulfidogermanates or thiogermanates are chemical compounds containing anions with sulfur atoms bound to germanium. They are in the class of chalcogenidotetrelates. Related compounds include thiosilicates, thiostannates, selenidogermanates, telluridogermanates and selenidostannates.

Arsenide bromides or bromide arsenides are compounds containing anions composed of bromide (Br) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide chlorides, arsenide iodides, phosphide bromides, and antimonide bromides.

Arsenide iodides or iodide arsenides are compounds containing anions composed of iodide (I) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide chlorides, arsenide bromides, phosphide iodides, and antimonide iodides.

Arsenide chlorides or chloride arsenides are compounds containing anions composed of chloride (Cl) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide bromides, arsenide iodides, phosphide chlorides, and antimonide chlorides.

Carbide chlorides are mixed anion compounds containing chloride anions and anions consisting entirely of carbon. In these compounds there is no bond between chlorine and carbon. But there is a bond between a metal and carbon. Many of these compounds are cluster compounds, in which metal atoms encase a carbon core, with chlorine atoms surrounding the cluster. The chlorine may be shared between clusters to form polymers or layers. Most carbide chloride compounds contain rare earth elements. Some are known from group 4 elements. The hexatungsten carbon cluster can be oxidised and reduced, and so have different numbers of chlorine atoms included.

Carbide iodides are mixed anion compounds containing iodide and carbide anions. Many carbide iodides are cluster compounds, containing one, two or more carbon atoms in a core, surrounded by a layer of metal atoms, and encased in a shell of iodide ions. These ions may be shared between clusters to form chains, double chains or layers.

Selenidostannates are chemical compounds which contain anionic units of selenium connected to tin. They can be considered as stannates where selenium substitutes for oxygen. Similar compounds include the selenogermanates and thiostannates. They are in the category of chalcogenidotetrelates or more broadly chalcogenometallates.

Tellurogermanates or telluridogermanates are compounds with anions with tellurium bound to germanium. They are analogous with germanates, thiogermanates and selenidogermanates.

<span class="mw-page-title-main">Transition metal ether complex</span>

In chemistry, a transition metal ether complex is a coordination complex consisting of a transition metal bonded to one or more ether ligand. The inventory of complexes is extensive. Common ether ligands are diethyl ether and tetrahydrofuran. Common chelating ether ligands include the glymes, dimethoxyethane (dme) and diglyme, and the crown ethers. Being lipophilic, metal-ether complexes often exhibit solubility in organic solvents, a property of interest in synthetic chemistry. In contrast, the di-ether 1,4-dioxane is generally a bridging ligand.

References

  1. Benkada, Assma; Reinsch, Helge; Poschmann, Michael; Krahmer, Jan; Pienack, Nicole; Bensch, Wolfgang (18 February 2019). "Synthesis and Characterization of a Rare Transition-Metal Oxothiostannate and Investigation of Its Photocatalytic Properties". Inorganic Chemistry. 58 (4): 2354–2362. doi:10.1021/acs.inorgchem.8b02773. PMID   30702285. S2CID   73413851.
  2. 1 2 3 Lühmann, Henning; Näther, Christian; Jess, Inke; Bensch, Wolfgang (2019-10-14). "Synthesis, Crystal Structure, and Thermal Properties of Na 5 [SnS 4 ]Cl·13H 2 O". Zeitschrift für anorganische und allgemeine Chemie. 645 (18–19): 1165–1170. doi: 10.1002/zaac.201900169 . ISSN   0044-2313.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Sheldrick, William S.; Wachhold, Michael (September 1998). "Chalcogenidometalates of the heavier Group 14 and 15 elements". Coordination Chemistry Reviews. 176 (1): 211–322. doi:10.1016/s0010-8545(98)00120-9.
  4. 1 2 3 4 5 Hilbert, Jessica; Näther, Christian; Bensch, Wolfgang (2017-12-13). "Fast Room Temperature Synthesis of the Thiostannate [Ni(2amp) 3 ] 2 [Sn 2 S 6 ]·9.5H 2 O: Crystal Structure and Properties: Fast Room Temperature Synthesis of the Thiostannate [Ni(2amp) 3 ] 2 [Sn 2 S 6 ]·9.5H 2 O: Crystal Structure and Properties". Zeitschrift für anorganische und allgemeine Chemie. 643 (23): 1861–1866. doi: 10.1002/zaac.201700193 .
  5. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Benkada, Assma; Reinsch, Helge; Bensch, Wolfgang (2019-11-10). "The First Thiostannate Compound with Copper(II) Synthesized Under Ambient Conditions: Crystal Structure, Electronic and Thermal Properties". European Journal of Inorganic Chemistry. 2019 (41): 4427–4432. doi: 10.1002/ejic.201900924 . ISSN   1434-1948.
  6. Kaib, Thomas; Haddadpour, Sima; Kapitein, Manuel; Bron, Philipp; Schröder, Cornelia; Eckert, Hellmut; Roling, Bernhard; Dehnen, Stefanie (2012-06-12). "New Lithium Chalcogenidotetrelates, LiChT: Synthesis and Characterization of the Li + -Conducting Tetralithium ortho- Sulfidostannate Li 4 SnS 4". Chemistry of Materials. 24 (11): 2211–2219. doi:10.1021/cm3011315. ISSN   0897-4756.
  7. Kaib, Thomas; Kapitein, Manuel; Dehnen, Stefanie (October 2011). "Synthesis and Crystal Structure of [Li8(H2O)29][Sn10O4S20]·2H2O". Zeitschrift für anorganische und allgemeine Chemie. 637 (12): 1683–1686. doi: 10.1002/zaac.201100268 .
  8. 1 2 Nørby, Peter; Overgaard, Jacob; Christensen, Per S.; Richter, Bo; Song, Xin; Dong, Mingdong; Han, Anpan; Skibsted, Jørgen; Iversen, Bo B.; Johnsen, Simon (2014-08-12). "(NH 4 ) 4 Sn 2 S 6 ·3H 2 O: Crystal Structure, Thermal Decomposition, and Precursor for Textured Thin Film". Chemistry of Materials. 26 (15): 4494–4504. doi:10.1021/cm501681r. ISSN   0897-4756.
  9. 1 2 3 Nørby, Peter; Eikeland, Espen; Overgaard, Jacob; Johnsen, Simon; Iversen, Bo B. (2015). "Expanding the structural versatility of thiostannate( iv ) complexes". CrystEngComm. 17 (11): 2413–2420. doi:10.1039/C4CE02224F. ISSN   1466-8033.
  10. 1 2 Pienack, Nicole; Näther, Christian; Bensch, Wolfgang (March 2009). "Solvothermal Syntheses of Two New Thiostannates and an In-Situ Energy Dispersive X-ray Scattering Study of Their Formation". European Journal of Inorganic Chemistry. 2009 (7): 937–946. doi: 10.1002/ejic.200801084 .
  11. Filsø, Mette Ø.; Chaaban, Iman; Al Shehabi, Amer; Skibsted, Jørgen; Lock, Nina (2017-10-01). "The structure-directing amine changes everything: structures and optical properties of two-dimensional thiostannates". Acta Crystallographica Section B. 73 (5): 931–940. Bibcode:2017AcCrB..73..931F. doi:10.1107/S2052520617010630. ISSN   2052-5206. PMID   28980999.
  12. 1 2 Pada Nayek, Hari; Lin, Zhien; Dehnen, Stefanie (October 2009). "Solvent-modified SiS 2 -type SnS 2: Synthesis, Crystal Structures and Properties of {}^1_\infty[SnS 2 · en ] and [ en H] 4 [Sn 2 S 6 ]· en". Zeitschrift für anorganische und allgemeine Chemie. 635 (12): 1737–1740. doi:10.1002/zaac.200900157.
  13. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 Olivier-Fourcade, J.; Jumas, J.C.; Ribes, M.; Philippot, E.; Maurin, M. (January 1978). "Evolution structurale et nature des liaisons dans la série des composés soufrés du silicium, du germanium, et de l'étain". Journal of Solid State Chemistry (in French). 23 (1–2): 155–176. Bibcode:1978JSSCh..23..155O. doi:10.1016/0022-4596(78)90062-2.
  14. Heppke, Eva M.; Lerch, Martin (2020-09-25). "Na 2 MgSnS 4 – a new member of the A 2 I B II C IV X 4 family of compounds". Zeitschrift für Naturforschung B. 75 (8): 721–726. doi:10.1515/znb-2020-0102. ISSN   1865-7117. S2CID   222005297.
  15. 1 2 3 4 5 Ruzin, Eugen; Jakobi, Stephan; Dehnen, Stefanie (June 2008). "Syntheses, Structures and Reactivity of Novel Hydrates ofortho-Sulfidostannte Salts". Zeitschrift für anorganische und allgemeine Chemie (in German). 634 (6–7): 995–1001. doi:10.1002/zaac.200800004.
  16. 1 2 3 4 5 Chen, Yao; Liu, Xing; Zhou, Jian; Zou, Hua-hong; Xiang, Bin (2021-02-15). "One-Dimensional Vanadium(III) Chalcogenidostannates Incorporating [V(tepa)] 3+ Complexes as Bridging Groups". Inorganic Chemistry. 60 (4): 2127–2132. doi:10.1021/acs.inorgchem.0c03484. ISSN   0020-1669. PMID   33503370. S2CID   231765552.
  17. 1 2 3 Jia, Ding-Xian; Zhang, Yong; Dai, Jie; Zhu, Qin-Yu; Gu, Xiao-Mei (February 2004). "Solvothermal Syntheses and Characterization of Thiostannates [M(en)3]2Sn2S6 (M = Mn, Co, Zn), the Influence of Metal Ions on the Crystal Structure". Zeitschrift für anorganische und allgemeine Chemie. 630 (2): 313–318. doi:10.1002/zaac.200300327. ISSN   0044-2313.
  18. 1 2 Fu, M. L.; Guo, G. C.; Liu, B.; Wu, A. Q.; Huang, J. S. (2005). "Two new thiostannates templated by transition metal complexes". Chinese Journal of Inorganic Chemistry. 21 (1): 25–29.
  19. 1 2 3 Han, Jing-yu; Liu, Yun; Lu, Jia-lin; Tang, Chun-ying; Shen, Ya-li; Zhang, Yong; Jia, Ding-xian (July 2015). "Methanolothermal Syntheses, Crystal Structures and Optical Properties of Binuclear Transition Metal Complexes Involving the Bidentate S-Donor Ligand μ-Sn2S6". Journal of Chemical Crystallography. 45 (7): 355–362. doi:10.1007/s10870-015-0601-3. ISSN   1074-1542. S2CID   93060529.
  20. Han, Jingyu; Li, Shufen; Zhang, Limei; Zheng, Wei; Jiang, Wenqing; Jia, Dingxian (July 2018). "T3 supertetrahedral cluster [Mn 4 Sn 6 S 20 ] 8−: Solvothermal syntheses, crystal structures and photocatalytic properties of Mn(II) chalcogenidostannates". Inorganic Chemistry Communications. 93: 73–77. doi:10.1016/j.inoche.2018.05.004. S2CID   104109618.
  21. Pienack, Nicole; Näther, Christian; Bensch, Wolfgang (April 2009). "The Inorganic-Organic Hybrid Compound {[Mn(trien)] 2 SnS 4 }·4H 2 O: Exhibiting a Hitherto Unknown Binding Mode of the [SnS 4 ] 4- Tetrahedron". European Journal of Inorganic Chemistry. 2009 (12): 1575–1577. doi:10.1002/ejic.200801093.
  22. 1 2 3 4 Hilbert, Jessica; Näther, Christian; Bensch, Wolfgang (2014-06-02). "Influence of the Synthesis Parameters onto Nucleation and Crystallization of Five New Tin–Sulfur Containing Compounds". Inorganic Chemistry. 53 (11): 5619–5630. doi:10.1021/ic500369m. ISSN   0020-1669. PMID   24845345.
  23. Liu, Guang-Ning; Guo, Guo-Cong; Chen, Feng; Guo, Sheng-Ping; Jiang, Xiao-Ming; Yang, Chen; Wang, Ming-Sheng; Wu, Mei-Feng; Huang, Jin-Shun (2010). "Stabilization of (SnS4)4− anion by coordinating to [TM(π-conjugated-ligand)m]n+ complex: a chain-like thiostannate(iv) {[Mn(phen)]2(SnS4)}n·nH2O exhibiting an unprecedented link mode of the (SnS4)4− anion". CrystEngComm. 12 (12): 4035. doi:10.1039/c0ce00292e. ISSN   1466-8033.
  24. 1 2 Hilbert, Jessica; Pienack, Nicole; Lühmann, Henning; Näther, Christian; Bensch, Wolfgang (December 2016). "Transition Metal Complexes with Linkage to the Thiostannate Units Forced by Suitable Amine Molecules: Transition Metal Complexes with Linkage to the Thiostannate Units Forced by Suitable Amine Molecules". Zeitschrift für anorganische und allgemeine Chemie. 642 (24): 1427–1434. doi:10.1002/zaac.201600318.
  25. Pienack, Nicole; Möller, Karina; Näther, Christian; Bensch, Wolfgang (December 2007). "(1,4-dabH)2MnSnS4: The first thiostannate with integrated Mn2+ ions in an anionic chain structure". Solid State Sciences. 9 (12): 1110–1114. Bibcode:2007SSSci...9.1110P. doi:10.1016/j.solidstatesciences.2007.07.030.
  26. Kaib, Thomas; Haddadpour, Sima; Andersen, Hanne Flåten; Mayrhofer, Leonhard; Järvi, Tommi T.; Moseler, Michael; Möller, Kai-Christian; Dehnen, Stefanie (10 December 2013). "Quaternary Diamond-Like Chalcogenidometalate Networks as Efficient Anode Material in Lithium-Ion Batteries". Advanced Functional Materials. 23 (46): 5693–5699. doi:10.1002/adfm.201301025. S2CID   93236286.
  27. 1 2 3 Pienack, Nicole; Lehmann, Stefanie; Lühmann, Henning; El-Madani, Marzog; Näther, Christian; Bensch, Wolfgang (October 2008). "Solvothermal Syntheses, Crystal Structures and Selected Optical Properties of [ M (C 8 N 5 H 23 )] 2 Sn 2 S 6 ( M = Co, Fe, Ni; C 8 N 5 H 23 = tetraethylenepentamine)". Zeitschrift für anorganische und allgemeine Chemie. 634 (12–13): 2323–2329. doi:10.1002/zaac.200800282.
  28. Zeisler, Christoph; Näther, Christian; Bensch, Wolfgang (2013). "A new synthetic approach to force bond formation between a transition metal complex and a thiostannate anion: solvothermal synthesis and crystal structure of [Co2(cyclam)2Sn2S6]·2H2O". CrystEngComm. 15 (44): 8874. doi:10.1039/c3ce40976g. ISSN   1466-8033.
  29. 1 2 Lühmann, Henning; Jeß, Inke; Näther, Christian; Bensch, Wolfgang (2020-02-28). "Crystal Structures and Selected Properties of Co II Containing Thiostannates prepared by a New Room Temperature Route". Zeitschrift für anorganische und allgemeine Chemie. 646 (4): 234–240. doi: 10.1002/zaac.201900227 . ISSN   0044-2313.
  30. "Butianite". www.mindat.org. Retrieved 2021-07-08.
  31. 1 2 Benkada, Assma (2020-11-30). Synthesis of Thiostannates, Oxo-Thiostannates and Tin-Sulfides Applying Transition Metal Complexes Containing Macrocyclic Amine Molecules: Development of new synthetic routes to synthesize Sn-S and S-Sn-O compounds and investigation of their properties (Thesis).
  32. Benkada, Assma; Poschmann, Michael; Näther, Christian; Bensch, Wolfgang (2019-02-28). "New Transition Metal Oxo-Thiostannate: Synthesis, Characterization, and Investigation of its Photocatalytic Properties: New Transition Metal Oxo-Thiostannate: Synthesis, Characterization, and Investigation of its Photocatalytic Properties". Zeitschrift für anorganische und allgemeine Chemie. 645 (4): 433–439. doi:10.1002/zaac.201800475. S2CID   104376198.
  33. 1 2 3 Hilbert, Jessica; Näther, Christian; Weihrich, Richard; Bensch, Wolfgang (2016-08-15). "Room-Temperature Synthesis of Thiostannates from {[Ni(tren)] 2 [Sn 2 S 6 ]} n". Inorganic Chemistry. 55 (16): 7859–7865. doi:10.1021/acs.inorgchem.6b00625. ISSN   0020-1669. PMID   27479453.
  34. 1 2 Hilbert, Jessica; Näther, Christian; Bensch, Wolfgang (April 2017). "Studies of the reactivity of {[Ni(tren)]2[Sn2S6]}: Synthesis and crystal structures of two new thiostannates prepared at room temperature". Inorganica Chimica Acta. 459: 29–35. doi:10.1016/j.ica.2017.01.018.
  35. 1 2 3 4 5 6 Hilbert, Jessica; Näther, Christian; Bensch, Wolfgang (2017-09-06). "Applying Ni(II) Amine Complexes and Sodium Thiostannate as Educts for the Generation of Thiostannates at Room Temperature". Crystal Growth & Design. 17 (9): 4766–4775. doi:10.1021/acs.cgd.7b00728. ISSN   1528-7483.
  36. 1 2 Hilbert, J.; Näther, C.; Bensch, W. (2015). "Utilization of mixtures of aromatic N-donor ligands of different coordination ability for the solvothermal synthesis of thiostannate containing molecules". Dalton Transactions. 44 (25): 11542–11550. doi: 10.1039/C5DT01145K . ISSN   1477-9226. PMID   26031892.
  37. 1 2 Benkada, Assma; Näther, Christian; Bensch, Wolfgang (2020-08-31). "Room Temperature Synthesis of New Thiostannates by Slow Interdiffusion of Different Solvents". Zeitschrift für anorganische und allgemeine Chemie. 646 (16): 1352–1358. doi: 10.1002/zaac.202000199 . ISSN   0044-2313.
  38. "Mohite". www.mindat.org. Retrieved 2021-07-15.
  39. "Kuramite Mineral Data". webmineral.com. Retrieved 2021-07-08.
  40. Chen, X.-a; Wada, H; Sato, A (January 1999). "Preparation, crystal structure and electrical properties of Cu4SnS6". Materials Research Bulletin. 34 (2): 239–247. doi:10.1016/S0025-5408(99)00013-6.
  41. Pienack, Nicole; Näther, Christian; Bensch, Wolfgang (January 2007). "Two new copper thiostannates synthesised under solvothermal conditions: Crystal structures, spectroscopic and thermal properties of (DBUH)CuSnS3 and (1,4-dabH2)Cu2SnS4". Solid State Sciences. 9 (1): 100–107. Bibcode:2007SSSci...9..100P. doi:10.1016/j.solidstatesciences.2006.11.012.
  42. 1 2 3 Duan, Ruihuan; Lin, Hua; Wang, Yue; Zhou, Yuqiao; Wu, Liming (2020). "Non-centrosymmetric sulfides A 2 Ba 6 MnSn 4 S 16 (A = Li, Ag): syntheses, structures and properties". Dalton Transactions. 49 (18): 5914–5920. doi:10.1039/D0DT00894J. ISSN   1477-9226. PMID   32314776. S2CID   216046852.
  43. 1 2 3 Behrens, Malte; Ordolff, Marie-Eve; Näther, Christian; Bensch, Wolfgang; Becker, Klaus-Dieter; Guillot-Deudon, Catherine; Lafond, Alain; Cody, Jason A. (2010-09-20). "New Three-Dimensional Thiostannates Composed of Linked Cu 8 S 12 Clusters and the First Example of a Mixed-Metal Cu 7 SnS 12 Cluster". Inorganic Chemistry. 49 (18): 8305–8309. doi:10.1021/ic100688z. ISSN   0020-1669. PMID   20726515.
  44. 1 2 Lühmann, Henning; Jeß, Inke; Näther, Christian; Bensch, Wolfgang (2020-02-28). "Crystal Structures and Selected Properties of Co II Containing Thiostannates prepared by a New Room Temperature Route". Zeitschrift für anorganische und allgemeine Chemie. 646 (4): 234–240. doi: 10.1002/zaac.201900227 . ISSN   0044-2313. S2CID   214133328.
  45. 1 2 Zhang, Xian; Wang, Qiuran; Ma, Zhimin; He, Jianqiao; Wang, Zhe; Zheng, Chong; Lin, Jianhua; Huang, Fuqiang (2015-06-01). "Synthesis, Structure, Multiband Optical, and Electrical Conductive Properties of a 3D Open Cubic Framework Based on [Cu 8 Sn 6 S 24 ] z − Clusters". Inorganic Chemistry. 54 (11): 5301–5308. doi:10.1021/acs.inorgchem.5b00317. ISSN   0020-1669. PMID   25955506.
  46. "Stannite". www.mindat.org. Retrieved 2021-07-08.
  47. "Mawsonite". www.mindat.org. Retrieved 2021-07-15.
  48. "Chatkalite". www.mindat.org. Retrieved 2021-07-08.
  49. "Nekrasovite". www.mindat.org. Retrieved 2021-07-15.
  50. "Search Results – Access Structures". www.ccdc.cam.ac.uk. Retrieved 2021-07-14.
  51. "Kësterite". www.mindat.org. Retrieved 2021-07-08.
  52. "Stannoidite". www.mindat.org. Retrieved 2021-07-15.
  53. "Ge-Sn-Sulvanite". www.mindat.org. Retrieved 2021-07-15.
  54. 1 2 3 4 Liao, Ju Hsiou; Kanatzidis, Mercouri G. (1993-10-01). "Quaternary rubidium copper tin sulfides (Rb2Cu2SnS4, A2Cu2Sn2S6 (A = Na, K, Rb, Cs), A2Cu2Sn2Se6 (A = K, Rb), potassium gold tin sulfides, K2Au2SnS4, and K2Au2Sn2S6. Syntheses, structures, and properties of new solid-state chalcogenides based on tetrahedral [SnS4]4- units". Chemistry of Materials. 5 (10): 1561–1569. doi:10.1021/cm00034a029. ISSN   0897-4756.
  55. 1 2 Tian, Tian; Li, Zefen; Wang, Naizheng; Zhao, Sangen; Xu, Jiayue; Lin, Zheshuai; Mei, Dajiang (2021-06-16). "Cs 2 ZnSn 3 S 8: A Sulfide Compound Realizes a Large Birefringence by Modulating the Dimensional Structure". Inorganic Chemistry. 60 (13): 9248–9253. doi:10.1021/acs.inorgchem.1c01024. PMID   34132527. S2CID   235450479.
  56. Liu, Chuang; Mei, Dajiang; Cao, Wangzhu; Yang, Yi; Wu, Yuandong; Li, Guobao; Lin, Zheshuai (2019). "Mn-Based tin sulfide Sr 3 MnSn 2 S 8 with a wide band gap and strong nonlinear optical response". Journal of Materials Chemistry C. 7 (5): 1146–1150. doi:10.1039/C8TC05904G. ISSN   2050-7526. S2CID   139249564.
  57. Teske, Chr. L. (January 1976). "Darstellung und Kristallstruktur von Cu2SrSnS4". Zeitschrift für anorganische und allgemeine Chemie (in German). 419 (1): 67–76. doi:10.1002/zaac.19764190112. ISSN   0044-2313.
  58. 1 2 Yang, Ya; Song, Miao; Zhang, Jie; Gao, Lihua; Wu, Xiaowen; Wu, Kui (2020). "Coordinated regulation on critical physiochemical performances activated from mixed tetrahedral anionic ligands in new series of Sr 6 A 4 M 4 S 16 (A = Ag, Cu; M = Ge, Sn) nonlinear optical materials". Dalton Transactions. 49 (11): 3388–3392. doi:10.1039/D0DT00432D. ISSN   1477-9226. PMID   32104856. S2CID   211535947.
  59. 1 2 3 4 Zhang, Lingyun; Mei, Dajiang; Wu, Yuanwang; Shen, Chenfei; Hu, Wenxin; Zhang, Lujia; Li, Jinjin; Wu, Yuandong; He, Xiao (April 2019). "Syntheses, structures, optical properties, and electronic structures of Ba6Cu2GSn4S16 (G = Fe, Ni) and Sr6D2FeSn4S16 (D = Cu, Ag)". Journal of Solid State Chemistry. 272: 69–77. Bibcode:2019JSSCh.272...69Z. doi:10.1016/j.jssc.2019.01.024. S2CID   104331229.
  60. 1 2 3 4 Zhou, Jian; Liu, Xing; An, Litao; Hu, Feilong; Yan, Wenbin; Zhang, Yunyan (2012-02-20). "Solvothermal Synthesis and Characterization of a Series of Lanthanide Thiostannates(IV): The First Examples of Inorganic–Organic Hybrid Cationic Lanthanide Thiostannates(IV)". Inorganic Chemistry. 51 (4): 2283–2290. doi:10.1021/ic2023083. ISSN   0020-1669. PMID   22280530.
  61. "Canfieldite". www.mindat.org. Retrieved 2021-07-15.
  62. Yang, Ya; Wu, Kui; Zhang, Bingbing; Wu, Xiaowen; Lee, Ming-Hsien (2020-02-17). "One-Dimensional Double Chains in Sodium-Based Quaternary Chalcogenides Displaying Intriguing Red Emission and Large Optical Anisotropy". Inorganic Chemistry. 59 (4): 2519–2526. doi:10.1021/acs.inorgchem.9b03444. ISSN   0020-1669. PMID   31999111. S2CID   210947790.
  63. "Agmantinite". www.mindat.org. Retrieved 2021-07-08.
  64. "Pirquitasite". www.mindat.org. Retrieved 2021-07-08.
  65. "Hocartite". www.mindat.org. Retrieved 2021-07-15.
  66. "Toyohaite". www.mindat.org. Retrieved 2021-07-15.
  67. Xiong, Wei-Wei; Miao, Jianwei; Li, Pei-Zhou; Zhao, Yanli; Liu, Bin; Zhang, Qichun (2014). "[enH][Cu 2 AgSnS 4 ]: a quaternary layered sulfide based on Cu–Ag–Sn–S composition". CrystEngComm. 16 (27): 5989–5992. doi:10.1039/C4CE00740A. ISSN   1466-8033.
  68. Pienack, Nicole; Bensch, Wolfgang (August 2006). "The New Silver Thiostannate (1,4-dabH2)Ag2SnS4: Solvothermal Synthesis, Crystal Structure and Spectroscopic Properties". Zeitschrift für anorganische und allgemeine Chemie (in German). 632 (10–11): 1733–1736. doi:10.1002/zaac.200600111. ISSN   0044-2313.
  69. Zhang, Bo; Li, Jun; Du, Cheng-Feng; Feng, Mei-Ling; Huang, Xiao-Ying (2016-11-07). "[CH 3 NH 3 ] 2 Ag 4 Sn IV 2 Sn II S 8: An Open-Framework Mixed-Valent Chalcogenidostannate". Inorganic Chemistry. 55 (21): 10855–10858. doi:10.1021/acs.inorgchem.6b02317. ISSN   0020-1669. PMID   27768295.
  70. Zhang, Bo; Feng, Mei-Ling; Li, Jun; Hu, Qian-Qian; Qi, Xing-Hui; Huang, Xiao-Ying (March 2017). "Syntheses, Crystal Structures, and Optical and Photocatalytic Properties of Four Small-Amine-Molecule-Directed M–Sn–Q (M = Zn, Ag; Q = S, Se) Compounds". Crystal Growth & Design. 17 (3): 1235–1244. doi:10.1021/acs.cgd.6b01619. ISSN   1528-7483.
  71. Li, Jian-Rong; Huang, Xiao-Ying (2011). "[(Me)2NH2]0.75[Ag1.25SnSe3]: A three-dimensionally microporous chalcogenide exhibiting framework flexibility upon ion-exchange". Dalton Transactions. 40 (17): 4387–4390. doi:10.1039/c0dt01381a. ISSN   1477-9226. PMID   21225068.
  72. "Černýite". www.mindat.org. Retrieved 2021-07-15.
  73. "Petrukite". www.mindat.org. Retrieved 2021-07-15.
  74. "Sakuraiite". www.mindat.org. Retrieved 2021-07-15.
  75. Teske, Chr. L. (October 1978). "Darstellung und Kristallstruktur von Gold-Barium-Thiostannat(lV), Au2,BaSnS4". Zeitschrift für anorganische und allgemeine Chemie (in German). 445 (1): 193–201. doi:10.1002/zaac.19784450124. ISSN   0044-2313.
  76. Liu, Yan; Li, Yanhua; Zhao, Jie; Zhang, Renchun; Ji, Min; You, Zhonglu; An, Yonglin (January 2020). "Solvothermal syntheses, characterizations and semiconducting properties of four quaternary thioargentates Ba2AgInS4, Ba3Ag2Sn2S8, BaAg2MS4 (M = Sn, Ge)". Journal of Alloys and Compounds. 815: 152413. doi:10.1016/j.jallcom.2019.152413. S2CID   204304414.
  77. 1 2 Sheldrick, William S.; Wachhold, Michael (September 1998). "Chalcogenidometalates of the heavier Group 14 and 15 elements". Coordination Chemistry Reviews. 176 (1): 211–322. doi:10.1016/S0010-8545(98)00120-9.
  78. Luo, Xiaoyu; Li, Zhuang; Liang, Fei; Guo, Yangwu; Wu, Yicheng; Lin, Zheshuai; Yao, Jiyong (2019-05-20). "Synthesis, Structure, and Characterization of Two Mixed-Cation Quaternary Chalcogenides K 2 BaSnQ 4 (Q = S, Se)". Inorganic Chemistry. 58 (10): 7118–7125. doi:10.1021/acs.inorgchem.9b00967. ISSN   0020-1669. PMID   31067038. S2CID   148568495.
  79. 1 2 Duan, Rui-Huan; Li, Rui-An; Liu, Peng-Fei; Lin, Hua; Wang, Yue; Wu, Li-Ming (2018-09-05). "Modifying Disordered Sites with Rational Cations to Regulate Band-Gaps and Second Harmonic Generation Responses Markedly: Ba 6 Li 2 ZnSn 4 S 16 vs Ba 6 Ag 2 ZnSn 4 S 16 vs Ba 6 Li 2.67 Sn 4.33 S 16". Crystal Growth & Design. 18 (9): 5609–5616. doi:10.1021/acs.cgd.8b00927. ISSN   1528-7483. S2CID   105919832.
  80. Zhen, Ni; Wu, Kui; Wang, Ying; Li, Qiang; Gao, Wenhui; Hou, Dianwei; Yang, Zhihua; Jiang, Huaidong; Dong, Yongjun; Pan, Shilie (2016). "BaCdSnS 4 and Ba 3 CdSn 2 S 8: syntheses, structures, and non-linear optical and photoluminescence properties". Dalton Transactions. 45 (26): 10681–10688. doi:10.1039/C6DT01537A. ISSN   1477-9226. PMID   27272926.
  81. 1 2 Teske, Chr. L. (1985). "Darstellung und Kristallstruktur von Ba3CdSn2S8 mit einer Anmerkung über Ba6CdAg2Sn4S16". Zeitschrift für anorganische und allgemeine Chemie (in German). 522 (3): 122–130. doi:10.1002/zaac.19855220315. ISSN   0044-2313.
  82. Pienack, Nicole; Lühmann, Henning; Näther, Christian; Bensch, Wolfgang (January 2016). "A New Solvothermal Synthetic Route Yields the New Thiostannate [La(dien) 3 ] 2 [Sn 2 S 6 ]Cl 2: The New Thiostannate [La(dien) 3 ] 2 [Sn 2 S 6 ]Cl 2". Zeitschrift für anorganische und allgemeine Chemie. 642 (1): 25–30. doi:10.1002/zaac.201500661.
  83. 1 2 3 4 5 6 Tang, Chunying; Lu, Jialin; Han, Jingyu; Liu, Yun; Shen, Yali; Jia, Dingxian (October 2015). "Complexations of Ln(III) with SnS4H and Sn2S6: Solvothermal syntheses and characterizations of lanthanide coordination polymers with thiostannate and polyamine mixed ligands". Journal of Solid State Chemistry. 230: 118–125. Bibcode:2015JSSCh.230..118T. doi:10.1016/j.jssc.2015.06.008.
  84. 1 2 3 Feng, Kai; Zhang, Xu; Yin, Wenlong; Shi, Youguo; Yao, Jiyong; Wu, Yicheng (2014-02-17). "New Quaternary Rare-Earth Chalcogenides Ba Ln Sn 2 Q 6 ( Ln = Ce, Pr, Nd, Q = S; Ln = Ce, Q = Se): Synthesis, Structure, and Magnetic Properties". Inorganic Chemistry. 53 (4): 2248–2253. doi:10.1021/ic402934m. ISSN   0020-1669. PMID   24498849.
  85. 1 2 3 Zhao, Qianxin; Jia, Dingxian; Zhang, Yong; Song, Lifeng; Dai, Jie (April 2007). "First example of thiostannates with lanthanide-containing counter cations: Solvothermal synthesis, crystal structures and properties of thiostannates with neodymium(III) and gadolinium(III) complexes of bidentate and tridentate amino ligands". Inorganica Chimica Acta. 360 (6): 1895–1901. doi:10.1016/j.ica.2006.09.023.
  86. 1 2 Lu, Xin-hua; Liang, Jing-jing; Zhao, Jing; Zhang, Yong; Jia, Ding-xian (April 2011). "Solvothermal Syntheses and Crystal Structures of Neodymium Thiostannates [Nd(dien)3]2[(Sn2S6)Cl2] and [Nd(dien)3]2[(Sn2S6)(SH)2]". Journal of Chemical Crystallography. 41 (4): 557–562. doi:10.1007/s10870-010-9921-5. ISSN   1074-1542. S2CID   95550419.
  87. 1 2 3 Chen, Rui-hong; Wang, Fang; Tang, Chun-ying; Zhang, Yong; Jia, Ding-xian (June 2013). "Solvothermal Syntheses and Crystal Structures of Hexachalcogenidodistannates with Europium Complexes of Different Ethylene Polyamine Ligands". Journal of Chemical Crystallography. 43 (6): 319–324. doi:10.1007/s10870-013-0423-0. ISSN   1074-1542. S2CID   97917911.
  88. 1 2 3 4 Jin, Qinyan; Chen, Jiangfang; Pan, Yingli; Zhang, Yong; Jia, Dingxian (2010-05-10). "Solvothermal syntheses and optical properties of hexathiostannates containing samarium(III) complexes with different ethylene polyamines". Journal of Coordination Chemistry. 63 (9): 1492–1503. doi:10.1080/00958972.2010.482666. ISSN   0095-8972. S2CID   98109293.
  89. 1 2 3 4 5 Chen, Ruihong; Wang, Fang; Tang, Chunying; Zhang, Yong; Jia, Dingxian (2013-06-17). "Heterometallic Clusters [CuSn 3 S 9 ] 5− and [Cu 6 Sn 6 S 20 ] 10−: Solvothermal Synthesis and Characterization of 4f-3d Thiostannates". Chemistry – A European Journal. 19 (25): 8199–8206. doi:10.1002/chem.201300044. PMID   23616420.
  90. 1 2 Tan, Xiao-Feng; Liu, Xing; Zhou, Jian; Zhu, Ligang; Zhao, Rongqing; Huang, Qian (January 2016). "Two Quaternary Copper Thiostannates with Lanthanum(III) Complexes". Journal of Cluster Science. 27 (1): 257–265. doi:10.1007/s10876-015-0927-1. ISSN   1040-7278. S2CID   93262656.
  91. Llanos, Jaime; Mujica, Carlos; Sánchez, Vı́ctor; Peña, Octavio (June 2003). "Physical and optical properties of the quaternary sulfides SrCu2MS4 and EuCu2MS4 (M=Ge and Sn)". Journal of Solid State Chemistry. 173 (1): 78–82. Bibcode:2003JSSCh.173...78L. doi:10.1016/S0022-4596(03)00093-8.
  92. Aitken, Jennifer A.; Lekse, Jonathan W.; Yao, Jin-Lei; Quinones, Rosalynn (January 2009). "Synthesis, structure and physicochemical characterization of a noncentrosymmetric, quaternary thiostannate: EuCu2SnS4". Journal of Solid State Chemistry. 182 (1): 141–146. Bibcode:2009JSSCh.182..141A. doi:10.1016/j.jssc.2008.09.022.
  93. 1 2 3 Han, Jingyu; Liu, Yun; Lu, Jialin; Tang, Chunying; Wang, Fang; Shen, Yali; Zhang, Yong; Jia, Dingxian (July 2015). "Heterometallic sulfide cluster [Ag6Sn6S20]10−: Solvothermal syntheses and characterizations of silver thiostannates with lanthanide complex counter cations". Inorganic Chemistry Communications. 57: 18–21. doi:10.1016/j.inoche.2015.04.018.
  94. "Kiddcreekite". www.mindat.org. Retrieved 2021-07-15.
  95. "Bowlesite". www.mindat.org. Retrieved 2021-07-15.
  96. 1 2 3 4 Teske, Christoph Ludwig; Terraschke, Huayna; Mangelsen, Sebastian; Bensch, Wolfgang (2020-11-15). "Re-investigation of Barium-Gold(I)-Tetra-Thiostannate(IV), Ba[Au 2 SnS 4 ], with Short Au I ···Au I Separation Showing Luminescence Properties". Zeitschrift für anorganische und allgemeine Chemie. 646 (21): 1716–1721. doi: 10.1002/zaac.202000306 . ISSN   0044-2313.
  97. Reshak, A.H.; Azam, Sikander (November 2014). "Linear and nonlinear optical properties of α-K2Hg3Ge2S8 and α-K2Hg3Sn2S8 compounds". Optical Materials. 37: 97–103. Bibcode:2014OptMa..37...97R. doi:10.1016/j.optmat.2014.05.006.
  98. "Velikite". www.mindat.org. Retrieved 2021-07-08.
  99. 1 2 Guo, Yangwu; Liang, Fei; Li, Zhuang; Xing, Wenhao; Lin, Zhe-shuai; Yao, Jiyong; Mar, Arthur; Wu, Yicheng (2019-08-05). "AHgSnQ 4 (A = Sr, Ba; Q = S, Se): A Series of Hg-Based Infrared Nonlinear-Optical Materials with Strong Second-Harmonic-Generation Response and Good Phase Matchability". Inorganic Chemistry. 58 (15): 10390–10398. doi:10.1021/acs.inorgchem.9b01572. ISSN   0020-1669. PMID   31342744. S2CID   198494837.
  100. Xing, Wenhao; Tang, Chunlan; Wang, Naizheng; Li, Chunxiao; Li, Zhuang; Wu, Jieyun; Lin, Zheshuai; Yao, Jiyong; Yin, Wenlong; Kang, Bin (2020-12-21). "EuHgGeSe 4 and EuHgSnS 4: Two Quaternary Eu-Based Infrared Nonlinear Optical Materials with Strong Second-Harmonic-Generation Responses". Inorganic Chemistry. 59 (24): 18452–18460. doi:10.1021/acs.inorgchem.0c03176. ISSN   0020-1669. PMID   33256399. S2CID   227245551.
  101. "Coiraite". www.mindat.org. Retrieved 2021-07-15.
  102. "Franckeite". www.mindat.org. Retrieved 2021-07-15.
  103. "Ramosite". www.mindat.org. Retrieved 2021-07-15.
  104. "Cylindrite". www.mindat.org. Retrieved 2021-07-15.
  105. "Incaite". www.mindat.org. Retrieved 2021-07-15.
  106. "Plumbostannite". www.mindat.org. Retrieved 2021-07-15.
  107. Abudurusuli, Ailijiang; Ding, Hanqin; Wu, Kui (November 2017). "Synthesis and characterization of two lead-containing metal chalcogenides: Ba5Pb2Sn3S13 and Ba6PbSn3Se13". Journal of Solid State Chemistry. 255: 133–138. Bibcode:2017JSSCh.255..133A. doi:10.1016/j.jssc.2017.08.019.
  108. "Abramovite". www.mindat.org. Retrieved 2021-07-15.
  109. "Lévyclaudite". www.mindat.org. Retrieved 2021-07-15.