Sulfidostannates, or thiostannates are chemical compounds containing anions composed of tin linked with sulfur. They can be considered as stannates with sulfur substituting for oxygen. Related compounds include the thiosilicates, and thiogermanates, and by varying the chalcogen: selenostannates, and tellurostannates. Oxothiostannates have oxygen in addition to sulfur. [1] Thiostannates can be classed as chalcogenidometalates, thiometallates, chalcogenidotetrelates, thiotetrelates, and chalcogenidostannates. Tin is almost always in the +4 oxidation state in thiostannates, although a couple of mixed sulfides in the +2 state are known,
Some thiostannate minerals are known. In nature the tin can be partly replaced by arsenic, germanium, antimony or indium. Many thiostannate minerals contain copper, silver or lead. In the field of mineralogy, these compound can be termed sulfostannates or sulphostannates.
Different cluster anions are known: [SnS4]4–, [SnS3]2–, [Sn2S5]2–, [Sn2S6]4–, [Sn2S7]6–, [Sn2S8]2–, [Sn3S7]2–, [Sn4S9]2–, [Sn5S12]4–, or [Sn4S10]4–. [2]
The number of sulfur atoms coordinated around the tin atom is most commonly four. However there are also complexes with five or six sulfur atoms surrounding the tin. The behaviour for selenium and tellurium differs as only five selenium or four tellurium atoms can bind to a tin atom. The smaller germanium atom can only accommodate four sulfur atoms. For lead it is hard for it to be in the +4 oxidation state. The SnSn polyhedrons can be standalone in strongly alkaline conditions, or at higher concentrations or less alkaline can condense together. Polyhedra shapes are tetrahedron for four, trigonal bipyramid for five, and octahedron for six sulfur atoms. The polyhedra can be connected at a vertex (corner), or at an edge. Where connected at an edge, four membered rings of -SnSSnS- with internal angles close to 90°. [3] [Sn2S7]6– is corner bridged. Tetrahedra linked by at the corner by a disulfur bridge are unknown. [3]
Sn10O4S208- is a supertetrahedron made from 1, 3 and 6 tin atoms connected by oxygen on the interior and sulfur on the surface. [3]
For anions with formula SnxSy the condensation ratio c is given by x⁄y. It can vary from 1⁄4 to just below 1/2. [3]
The first human production of a thiostannate heated tin oxide with sodium carbonate and sulfur: [4]
2SnO2 + 2Na2CO3 + 9S → 2Na2SnS3 + 2CO2 + 3SO2
Transition metal complexes may be prepared by crystallisation from the ligand solvent. [4]
Copper(II) is normally reduced by sulfide S2- in thiostannates to copper(I). [5]
formula | name | coordination | dimensionality | description |
---|---|---|---|---|
[SnS4]4− | 4 | 0 | tetrahedra | |
[Sn2S6]4− | bis(μ-sulfido)-tetrathiolato-di-tin | 4 | 0 | edge shared |
[Sn3S9]6− | 1,3,5,2,4,6-trithiatristanninane-2,2,4,4,6,6-hexakis(thiolate) | 4 | 0 | 6 membered ring |
[Sn4S10]4- | 4 | 0 | tetrameric adamantane-like : tetrahedron of tetrahedra, 6 bridging sulfur, 4 terminal sulfur | |
Some hydrates are unstable, where water reacts with the sulfide to make hydrogen sulfide gas.
formula | system | space group | unit cell Å | volume | density | comment | |
---|---|---|---|---|---|---|---|
Li4SnS4 | orthorhombic | Pnma | a=13.812 b=7.962 c=6.370 | [6] | |||
[Li8(H2O)29][Sn10O4S20]·2H2O | triclinic | P1 | a = 11.232, b = 13.097, c = 23.735, α = 102.73°, β = 90.43°, γ = 93.44°, Z = 2 | 3399 | oxothiostannate | [7] | |
(NH4)4Sn2S6·3H2O | orthorhombic | P41212 | a =8.56294 b =8.56294 c= 22.7703 | [8] | |||
(NH4)6Sn3S9·1.3H2O | monoclinic | C2 | a 16.9872 b 10.54777 c 21.0871 β 108.0389° | 3592.6 | 2.154 | colourless | [9] |
[(CH3)3NH]2Sn3S7 | [3] | ||||||
[(CH3)4N]2Sn3S7·H2O | [3] | ||||||
[(CH3)4N]4Sn4S10 | [8] | ||||||
[(CH3CH2)4N]2Sn3S7 | [3] | ||||||
[(CH3CH2CH2)4N]2Sn4S9 | [3] | ||||||
[(CH3CH2CH2CH2)4N]2Sn4S9 | [3] | ||||||
[(CH3CH2CH2)4N][(CH3)3NH]Sn4S9 | [3] | ||||||
(C12H25NH3)4Sn2S6·2H2O | [3] | ||||||
[dabcoH]2Sn3S7 | [3] | ||||||
(Et4N)2Sn(S4)3 | [3] | ||||||
(Et4N)2Sn(S4)2(S6) | [3] | ||||||
((CH3C(NH2)2)8Sn2S6SnS4 | monoclinic | C 1 2/m 1 | a=23.7739 b=16.0647 c=11.8936 β=99.029 Z=4 | 4486.1 | 1.702 | colourless | [9] |
((CH3)2NH2)(NH4)SnS3 dimethylammonium ammonium | orthorhombic | P212121 | a=5.9393 b=12.1816 c=12.4709 Z=4 | 902.26 | 2.054 | colourless | [9] |
(DBNH)2Sn3S6 DBN=1,5-diazabicyclo[4.3.0]non-7-ene | Sn(II) and Sn(IV) | [10] | |||||
(1AEP)2Sn3S7 1AEP = 1-(2-aminoethyl) piperidine | orthorhombic | P212121 | a=13.2299 b= 22.2673 c=9.0772 Z=4 | 2674.1 | pale yellow | [11] | |
SnS2·en | monoclinic | C2/c | a 15.317 b 10.443 c 12.754, β 93.62° | [12] | |||
[enH]4[Sn2S6]·en | triclinic | P1 | a 9.8770 b 9.9340 c 15.4230, α 72.630° β 86.220° γ 81.380° | [12] | |||
Na2SnS3 | R3m | a=3.834 c=19.876 Z=2 | 253 | 3.43 | [4] [13] | ||
Na4SnS4 | tetragonal | P421c | a=7.837 c=6.950 | 427 | 2.64 | [13] | |
Na4Sn2S6 | [3] | ||||||
Na4Sn2S6·14H2O | triclinic | P1 | a=10.114 b=7.027 c=9.801 α=108.30 β=92.18 γ=91.11 Z=1 | 663 | 1.95 | [2] | |
Na4SnS4·14H2O | monoclinic | C2/c | a=8.622 b=23.534 c=11.347 β=110.53 Z=4 | 2156 | 1.82 | [13] | |
Na4Sn3S8 | [3] | ||||||
Na5[SnS4]Cl·13H2O | monoclinic | P21/m | a=8.4335 b=11.4958 c=11.5609 β=91.066 Z=2 | 1120.63 | 1.872 | [2] | |
Na4Sn2S6·5H2O | [3] | ||||||
Na6Sn2S7 | C2/c | a=9.395 b=10.719 c=15.671 β=109.97 Z=4 | 1483 | 2.69 | [13] | ||
Mg2SnS4 | orthorhombic | Pnma | a=12.93 b=7.52 c=6.16 Z=4 | 599 | 3.28 | [13] | |
Na2MgSnS4 | R3m | a 3.7496 b 3.7496 c 19.9130 | [14] | ||||
(Ph4P)2Sn(S4)3 | [3] | ||||||
K2SnS3·2H2O | [3] | ||||||
K2SnS3·2H2O | orthorhombic | Pnma | a=6.429 b=15.621 c=10.569 Z=4 | 1061 | 2.06 | [13] | |
K2Sn2S5 | [3] | ||||||
K2Sn3S7·H2O | [3] | ||||||
[K4(H2O)4][SnS4] | [15] | ||||||
Ca2SnS4 | orthorhombic | Pnma | a=13.74 b=8.23 c=6.44 Z=4 | 728 | 2.99 | [13] | |
[H2tepa][VIII(tepa)(μ-Sn2Q6)]2 | orthorhombic | Abm2 | a =7.7486 b =40.410 c =16.745 | [16] | |||
Mn2SnS4 | tetragonal | I41/a | a=7.408 c=10.41 Z=8 | 571 | 4.15 | [13] | |
[Mn(en)3]2[Sn2S6] | monoclinic | C2/c | a=15.138 b=10.6533 c=23.586 β=118.42 Z=4 | 3345.2 | 1.787 | colourless | [5] [17] |
[Mn(en)3]2Sn2S6·2H2O | monoclinic | P21/c | a=10.129, b=15.746, c=11.524, β=102.36° Z=2 | 1795.5 | 1.732 | [18] | |
[Mn(en)2]2(μ-en)[Sn2S6] | triclinic | a=9.0017 b=9.7735 c=10.8421 α=60.38° β=67.23° γ=70.25° | 752.38 | [16] | |||
[Mn(dien)2]2Sn2S6 | monoclinic | P21/c | a=12.48 12, b= 9.3760, c=17.7617, β=121.752°, Z=2, | 1767.5 | 1.789 | [18] | |
[Mn(tren)]2Sn2S6 | triclinic | P1 | a 7.653 b 8.088 c 12.200, α 97.27° β 104.06° γ 108.80° Z=1 | 676.0 | 2.044 | yellow | [5] [19] |
[Mn(tren)(H2O)][Mn(baen)]3Mn4Sn6S20∙9H2O | orthorhombic | P213 | a =21.404 b =21.404 c= 21.404 | super tetrahedron | [20] | ||
{Mn(tepa)}2(μ-Sn2S6) | tetragonal | I41/a | a=25.977 c=10.041 Z=8 | 6775 | 1.800 | yellow | [19] |
{[Mn(trien)]2[SnS4]} | [5] | ||||||
{[Mn(C6H18N4)]2SnS4}·4H2O | monoclinic | P21/c | a 10.8446 b 20.974 c 13.2746 β 113.487° | [21] | |||
{[Mn(phen)2]2(μ2-Sn2S6)} | monoclinic | P21/n | a =10.8230 b=9.8940 c=24.811 β=91.356° | [22] | |||
{[Mn(phen)2]2(μ2-Sn2S6)}·phen | triclinic | P1 | a=10.0642 b=10.6249 c=13.693, α=71.700° β=81.458° γ=84.346° | [22] | |||
{[Mn(phen)2]2[Sn2S6]}·phen·H2O phen = 1,10-phenanthroline | triclinic | P1 | a=11.3203 b=12.1436 c=12.7586, α=113.200° β=90.908° γ=110.974° | [5] [22] | |||
[Mn(phen)]2(SnS4)·H2O | monoclinic | C2/m | a=16.146 b=19.262 c=9.938 β=124.970 Z=4 | 2532.6 | 1.928 | red chain | [23] |
{[Mn(phen)2]2[μ-η2-η2-SnS4]2[Mn(phen)]2}·H2O | triclinic | P1 | a=10.8703 b=12.5183 c=14.9644, α=103.381° β=108.390° γ=101.636° | [22] | |||
{[Mn(2,2′-bipy)2]2[Sn2S6]} | [24] | ||||||
(1,4-dabH)2MnSnS4 1,4-dab = 1,4-diaminobutane | orthorhombic | Fdd2 | a = 22.812, b = 24.789, c = 6.4153, Z = 8 | 3627.8 | [25] | ||
Li4MnSn2Se7 | monoclinic | Cc | a=18.126 b=7.2209 c=10.740 β=93.43 Z=4 | 1403.2 | 4.132 | orange | [26] |
Fe2SnS4 | tetragonal | I41/a | a=7.308 c=10.338 Z=4 | 552 | 4.32 | [13] | |
{[Fe(tepa)]2[Sn2S6]} | tetragonal | I41/a | [5] [27] | ||||
{[Fe(1,2-dach)2][Sn2S6]}·2(1,2-dachH) | [5] | ||||||
{[Fe(phen)2]2[Sn2S6]}·phen·H2O | [5] | ||||||
[Co(en)3]2[Sn2S6] | orthorhombic | Pbca | a=15.640 b=11.564 c=18.742 Z=4 | 2289.7 | 1.779 | yellow | [5] [17] |
[Co(dien)2]2[Sn2S6] | [5] | ||||||
[Co2(cyclam)2Sn2S6]·2H2O | [28] | ||||||
[Co(tren)]2Sn2S6 | monoclinic | C2/c | a=12.228 b=9.7528 c=23.285 β=102.90 | 2706.8 | [5] [16] | ||
{[Co(cyclam)]2[Sn2S6]}n·2nH2O cyclam = 1,4,8,11-tetraazacyclotetradecane | [5] | ||||||
{[Co(tepa)]2[Sn2S6]} tepa=tetraethylenepentamine | tetragonal | I41/a | a=25.742 c=9.898 | 6558 | [5] [27] [16] | ||
{[Co(phen)2]2[Sn2S6]}·phen·H2O | [5] | ||||||
[Co(2-(aminomethyl)pyridine)3]2Sn2S6·10H2O (2amp) | monoclinic | P21/c | a=10.1443 b=14.6124 c=18.8842 β=90.601° Z=2 | 2799.1 | 1.633 | yellow | [29] |
[Co(trans-1,2-diaminocyclohexane)3]2Sn2S6·8H2O (dach) | monoclinic | P21/n | a=12.6521 b=11.7187 c=20.4386 β=91.262° Z=2 | 3029.6 | 1.509 | red | [29] |
Ni6SnS2 Butianite | tetragonal | I4/mmm | a = 3.650, c = 18.141 Z=2 | 241.7 | 7.62 | opaque | [30] |
[Ni(en)3]2[Sn2S6] | [5] | ||||||
[Ni(dap)3]2[Sn2S6]·2H2O dap=1,2-diaminopropane | triclinic | P1 | a=9.9046 b=10.527 c=11.319 α =72.13° β =85.19° γ =63.63° | 1004.5 | [5] [16] | ||
[Ni(1,2-dach)3]2[Sn2S6]·4H2O 1,2-dach = 1,2-diaminocyclohexane | [5] | ||||||
[Ni(dien)2]2[Sn2S6] | [5] | ||||||
{[Ni(cyclen)]6[Sn6S12O2(OH)6]}·2(ClO4)·19H2O cyclen = 1,4,7,10-tetraazacyclododecane | [31] | ||||||
[Ni(cyclen)(H2O)2]4[Sn10S20O4]·~13H2O | [31] | ||||||
{[Ni(cyclen)]6[Sn6S12O2(OH)6]}·2(ClO4)·19H2O | monoclinic | C2/c | a=25.7223 b=15.6522 c=29.070 β=105.879 Z=4 | 11257 | 1.863 | oxothiostannate | [32] |
[Ni(2amp)3]2[Sn2S6]·9.5H2O 2amp = 2-(aminomethyl)pyridine | monoclinic | P21/n | a=18.7021 b=14.6141 c=20.2591 β=97.696 Z=4 | 5487.2 | 1.655 | purple | [4] |
[Ni(aepa)2]2[Sn2S6] aepa=N-2-aminoethyl-1,3-propandiamine | [5] | ||||||
[Ni(tren)]2Sn2S6 | monoclinic | C2/c | a=23.371 b=8.231 c=14.274 β =107.230 Z=4 | 2622.6 | 2.127 | [5] [33] | |
[Ni(tren)2]2[Sn2S6]·8H2O | orthorhombic | P42/n | a=26.1885 b=26.1885 c=11.1122 | [5] [34] | |||
[Ni(tren)(2amp)]2[Sn2S6] | triclinic | P1 | a =10.2878 b =11.1100 c =11.4206, α =84.740° β =84.395° γ =79.093° | [5] [34] | |||
[Ni(tren)(2amp)]2[Sn2S6]·10H2O | monoclinic | P21/n | a =12.1933 b =13.4025 c =14.8920 β= 103.090° | [35] | |||
[Ni(tren)(en)]2[Sn2S6]·2H2O | monoclinic | P21/n | a 12.7041 b 9.8000 c 15.3989, β 108.843° | [35] | |||
[Ni(tren)(en)]2[Sn2S6]·6H2O | monoclinic | P21/n | a 12.5580 b 9.7089 c 16.0359, β 91.827° | [35] | |||
[Ni(tren)(1,2-dach)]2[Sn2S6]·3H2O | triclinic | P1 | a 9.8121 b 10.0080 c 12.422, α 86.38° β 79.65° γ 65.72° | [35] | |||
[Ni(tren)(1,2-dach)]2[Sn2S6]·4H2O | monoclinic | P21/n | a 10.7119 b 19.0797 c 11.1005, β 104.803° | [35] | |||
{[Ni(cyclam)]2[Sn2S6]}·2H2O | [5] | ||||||
{[Ni(tepa)]2[Sn2S6]} | monoclinic | P21/n | [5] [27] | ||||
{[Ni(phen)2]2[Sn2S6]}·2,2′-bipy | monoclinic | P21/n | a=10.5715 b=9.9086 c=24.9960 β=92.800 Z=2 | 2615.17 | 1.809 | deep red | [5] [36] |
{[Ni(phen)2]2Sn2S6}·4,4′-bipy·½H2O 4,4′-bipy = 4,4′-bipyridine | monoclinic | C2/c | a=18.3431 b=19.4475 c=15.0835 β=95.556 Z=4 | 5355.4 | 1.789 | dark red-brown | [36] |
{[Ni(phen)2]2[Sn2S6]}·phen·H2O | [24] | ||||||
[Ni(L1)][Ni(L1)Sn2S6]n·2H2O L1 = 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane | monoclinic | P21/c | [37] | ||||
[Ni(L2)]2[Sn2S6]·4H2O L2 = 1,8-diethyl-1,3,6,8,10,13-hexaazacyclotetradecane | triclinic | P1 | [37] | ||||
[Ni(tren)(ma)(H2O)]2[Sn2S6]·4H2O ma = methylamine | monoclinic | P21/n | a=11.1715 b=10.5384 c=15.8594 Z=2 | 1827.45 | 1.835 | [33] | |
[Ni(tren)(1,2-dap)]2[Sn2S6]·2H2O | monoclinic | P21/n | a=12.9264 b=10.1627 c=15.6585 Z=2 | 1889.8 | 1.799 | [33] | |
[Ni(tren)(1,2-dap)]2[Sn2S6]·4H2O | monoclinic | C2/c | a =14.3925 b=15.1550 c=18.9307, β=99.108° | [35] | |||
[Ni(2amp)3]2[Sn2S6]·9.5H2O 2amp = 2-(aminomethyl)pyridine | monoclinic | P21/n | a=18.7021 b=14.6141 c=20.2591 Z=4 | 5487.23 | 1.655 | purple | [4] |
Cu2SnS3 Mohite | monoclinic | a=23.10 b=6.25 c=6.25 β=101.0° | 4.69 | greenish grey | [13] [38] | ||
Cu3SnS4 Kuramite | tetragonal | I42m | a = 5.445, c = 10.75, Z = 2 | 318.72 | 4.56 | [39] | |
Cu4SnS4 | orthorhombic | Pnma | a=13.70 b=7.750 c=6.454 Z=4 | 685 | 4.96 | [13] | |
Cu4SnS6 Erazoite | rhombohedral | R3m | a = 3.739, c = 32.941, Z = 2 | 4.53 | black | [40] | |
Cu4Sn7S16 | monoclinic | a=12.75 b=7.34 c=12.71 β=109.5 Z=2 | 1121 | 4.74 | [13] | ||
(DBUH)CuSnS3 DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene | monoclinic | P21/n | a=9.254 b=8.6190 c=18.135, β=92.80° | [41] | |||
(1,4-dabH2)Cu2SnS4 1,4-dab = 1,4-diaminobutane | tetragonal | P42/n | a=14.539 c=11.478 | [42] | |||
(enH)6Cu40Sn15S60 en=ethylenediamine | cubic | Pn3n | a=25.260 Z=4 | 16119 | 2.727 | black | [43] |
(enH)3Cu7Sn4S12 | trigonal | R3c | a=13.532 c=28.933 Z=6 | 4588 | 3.23 | red | [43] |
[H2en]2[Cu8Sn3S12] | [5] | ||||||
(trenH3)Cu7Sn4S12tren = tris(2-aminoethyl)amine) | trigonal | R3c | a=13.1059 c=29.347 Z=6 | 4365.4 | 3.317 | [43] | |
[dienH2][Cu2Sn2S6] | [5] | ||||||
[DBUH][CuSnS3] DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene | [5] | ||||||
[1,4-dabH2][Cu2SnS4] | [5] | ||||||
{[Cu(cyclam)]2[Sn2S6]}·2H2O cyclam=1,4,8,11-tetraazacyclotetradecane | triclinic | P1 | a=9.0580 b=9.9419 c=10.2352, α=97.068° β=94.314° γ=101.514° | [5] | |||
(DBNH)2Cu6Sn2S8 DBN=1,5-diazabicyclo[4.3.0]non-7-ene | [10] | ||||||
[Co(2-(aminomethyl)pyridine)3]2 Sn2S6·10H2O | monoclinic | P21/c | a=10.1443 b=14.6124 c=18.8842 β=90.601° Z=2 | 2799.1 | 1.633 | yellow; unstable | [44] |
[Co(trans-1,2-diaminocyclohexane)3]2Sn2S6·8H2O | monoclinic | P21/n | a=12.6521 b=11.7187 c=20.4386 β=91.262° Z=2 | 3029.6 | 1.509 | red | [44] |
Na4Cu32Sn12S48·4H2O | cubic | Fm3c | a = 17.921 z = 13 | black; absorption edge 2.0 eV | [45] | ||
CuAlSnS4 | cubic | a=10.28 Z=8 | 1074 | 4.17 | [13] | ||
K11Cu32Sn12S48·4H2O | cubic | Fm3c | a = 18.0559 z = 14.75 | black; absorption edge 1.9 eV | [45] | ||
Cu2MnSnS4 | tetragonal | a=5.49 c=10.72 Z=2 | 323 | 4.41 | [13] | ||
Cu2FeSnS4 Stannite Ferrokësterite | tetragonal | I42m | a = 5.4432, c = 10.7299 Z=2 | 317.91 | grey | [46] | |
Cu2FeSn3S8 | tetragonal | I41/a | a=7.29 c=10.31 Z=2 | 548 | 4.82 | [13] | |
Cu6Fe2SnS8 Mawsonite | Tetragonal | P4m2 | a = 7.603, c = 5.358 Z=1 | 309 | 4.65 | brownish orange | [47] |
Cu6FeSn2S8 Chatkalite | Tetragonal | P4m2 | a = 7.61, c = 5.373 Z=1 | 311.1 | 5.00 | [48] | |
Cu2CoSnS4 | Tetragonal | I42m | a=5.402 c=10.805 Z=2 | 315 | 4.56 | [13] | |
Cu2NiSnS4 | a=5.425 Z=1 | 160 | 4.49 | [13] | |||
Cu13VSn3S16 Nekrasovite | isometric | a=10.73 | 1,235 | brown | [49] | ||
[Zn(en)3]2[Sn2S6] | orthorhombic | Pbca | a=15.452 b=11.524 c=18.614 Z=4 | 3315.3 | 1.845 | colourless | [5] [17] |
{Zn(tren)}2(μ-Sn2S6) | monoclinic | C2/c | a 12.214 b 9.726 c 23.209 β 102.732° | 2689.3 | 2.107 | light yellow | [19] [50] |
Cu2ZnSnS4 Kësterite | tetragonal | I4 | a = 5.427, c = 10.871 Z=2 | 320.18 | 4.55 | greenish black | [51] |
Cu6+Cu22+(Fe2+,Zn)3Sn2S12 Stannoidite | orthorhombic | a = 10.76, b = 5.4, c = 16.09 | 934.9 | 4.68 | brass | [52] | |
Cu3(V,Ge,Sn)S4 Ge-Sn-Sulvanite | 361 | [53] | |||||
SnGeS3 Stangersite | monoclinic | P21/b | a = 7.270, b = 10.197, c = 6.846 β = 105.34° Z=4 | 489 | 3.98 | orange | |
Rb4SnS4 | [3] | ||||||
Rb4Sn2S6 | [3] | ||||||
Rb2Sn3S7·2H2O | [3] | ||||||
Rb2Cu2SnS4 | orthorhombic | Ibam | a=5.528 b=11.418 c=13.700 Z=4 | 865 | 4.185 | band gap 2.08 eV | [54] |
Rb2Cu2Sn2S6 | monoclinic | C2/c | a=11.026 b=11.019 c=20.299 β=97.79 Z=8 | 2444 | 3.956 | band gap 1.44 eV | [54] |
Rb2ZnSn3S8 | [55] | ||||||
[Rb4(H2O)4][SnS4] | [15] | ||||||
Sr3MnSn2S8 | cubic | I43d | a = 14.2287 Z = 8 | 2880.7 | 3.743 | dark green | [56] |
Cu2SrSnS4 | trigonal | P31 | a = 6.29, c = 15.57 Z=3 | 534 | 4.31 | [57] [13] | |
Sr6Cu4Sn4S16 | cubic | I43d | a=13.982 | 2734 | 4.295 | yellow | [58] |
Sr6Cu2FeSn4S16 | cubic | I43d | a=14.1349 | band gap 1.53 eV | [59] | ||
SrSnS3 | orthorhombic | Pnma | a=8.264 b=3.867 c=14.116 Z=4 | 451 | 4.45 | [13] | |
[Y2(dien)4(μ-OH)2]Sn2S6 | monoclinic | P21/n | a=11.854 b=11.449 c=13.803 β=97.978 Z=2 | 1855 | 1.888 | light yellow | [60] |
α-Ag8SnS6 | cubic | a=21.43 | 9842 | [13] | |||
β-Ag8SnS6 | cubic | a=10.85 | 1277 | [13] | |||
Ag8SnS6 Canfieldite | orthorhombic | a = 15.298, b = 7.548, c = 10.699 Z=4 | 1,235.4 | 6.311 | metallic | [61] | |
Na3AgSnS4 | monoclinic | P21/c | a 8.109 b 6.483 c 15.941, α 90° β 103.713 | double chain | [62] | ||
AgCrSnS4 | cubic | a=10.74 Z=8 | 1239 | 4.92 | [13] | ||
Ag2MnSnS4 – Agmantinite | orthorhombic | a = 6.632, b = 6.922, c = 8.156 Z=2 | 4.574 | orange | [63] | ||
Ag2ZnSnS4 Pirquitasite | tetragonal | I4 | a = 5.78, c = 10.82 | 361 | black | [64] | |
Ag2(Fe2+,Zn)SnS4 Hocartite | tetragonal | I42m | a = 5.74, c = 10.96 Z=2 | 361 | 4.77 | brownish grey | [65] |
Ag1+(Fe2+0.5Sn4+1.5)S4 Toyohaite | tetragonal | grey | [66] | ||||
[enH][Cu2AgSnS4] | orthorhombic | Pnma | a=19.7256 b=7.8544 c= 6.5083 Z=4 | 1008.3 | 3.577 | red | [67] |
Ag2SrSnS4 | orthorhombic | a=7.127 b=8.117 c=6.854 Z=2 | 397 | 5.02 | [13] | ||
Sr6Ag4Sn4S16 | cubic | I43d | a=14.2219 Z=4 | 2876.6 | 4.491 | yellow | [58] |
Sr6Ag2FeSn4S16 | cubic | I43d | a=14.2766 | band gap 1.87 eV | [59] | ||
[1,4-dabH2][Ag2SnS4] 1,4-dab = 1,4-diaminobutane | tetragonal | P42/n | a = 14.7847, c = 11.9087, Z = 8 | 2603.1 | [5] [68] | ||
[H2en][Ag2SnS4] | [5] | ||||||
[CH3NH3]2Ag4SnIV2SnIIS8 | orthorhombic | Pnma | a =19.378 b =7.390 c =13.683 Z=4 | 1959 | 3.756 | Orange Sn(II) | [69] |
[CH3NH3]6Ag12Sn6S21 | monoclinic | P21/c | a =18.8646 b =19.9115 c =14.3125 β 100.117° | [70] | |||
[(Me)2NH2]3[Ag5Sn4Se12] | tetragonal | P421m | a=13.998 c=8.685 Z=2 | 1701.9 | 4.403 | dark red | [71] |
[enH][Cu2AgSnS4] | [5] | ||||||
Cu2CdSnS4 | I42m | a=5.402 c=10.86 Z=2 | 338 | 4.77 | [13] | ||
Ag2CdSnS4 | Cmc21 | a=4.111 b=7.038 c=6.685 Z=1 | 193 | 4.95 | [13] | ||
Cu2(Cd,Zn,Fe)SnS4 Černýite | tetragonal | I42m | a = 5.48, c = 10.828 Z=4 | 326 | 4.76 | metallic | [72] |
CuInSnS4 | a=10.50 Z=8 | 1158 | 4.91 | [13] | |||
AgInSnS4 | a=10.16 Z=8 | 1048 | 4.59 | [13] | |||
(Cu,Fe,Zn,Ag)3(Sn,In)S4 Petrukite | orthorhombic | a = 7.66, b = 6.43, c = 6.26 | 308 | brown | [73] | ||
(Cu,Zn,Fe)3(In,Sn)S4 Sakuraiite | isometric | a = 5.46 Z=1 | 162 | greenish grey | [74] | ||
Sn2S3 | orthorhombic | Pnma | a=8.864 b=3.7471 c=14.020 Z=4 | 466 | 4.76 | [13] | |
Cs4SnS4 | 0d | [3] | |||||
Cs2Sn3S7·0.5S8 | 2d | [3] | |||||
Cs4Sn5S12·2H2O | 2d | [3] | |||||
[Cs4(H2O)3][SnS4] | [15] | ||||||
Cs2Sn(S4)2(S6) | [3] | ||||||
Cs8Sn10O4S20·13H2O | [3] | ||||||
[Cs10(H2O)18][Mn4(μ4-S)(SnS4)4] | [15] | ||||||
Cs2ZnSn3S8 | monoclinic | P21/n | a 7.5366 b 17.6947 c 12.4976, β=94.830° Z=4 | 1660.7 | 3.775 | layered, band gap 3. eV | [55] |
[Ba2(H2O)11][SnS4] | [15] | ||||||
Li2Ba6MnSn4S16 | cubic | I43d | a=14.6080 Z=4 | 3117.3 | 4.007 | light yellow | [42] |
Ag2Ba6MnSn4S16 | cubic | I43d | a=14.7064 Z=4 | 3180.7 | 4.349 | yellow | [42] |
Ag2BaSnS4 | orthorhombic | I222 | a =7.127 b =8.117 c =6.854 Z=2 | black | [75] | ||
Ba3Ag2Sn2S8 | [76] | ||||||
BaSnS2 | Sn(II) | [77] | |||||
BaSn2S3 | Sn(II) | [77] | |||||
BaSnS3 | orthorhombic | Pnma | a=8.527 b=3.933 c=14.515 Z=4 | 487 | 4.8 | [13] | |
BaSnS3 | monoclinic | C2/cCc | a=24.49 b=6.354 c=23.09 β=90.15 Z=28 | 3593 | 4.55 | [13] | |
α-Ba2SnS4 | monoclinic | P21/c | a=8.481 b=8.526 c=12.280 β=112.97 Z=4 | 818 | 4.24 | [13] | |
β-Ba2SnS4 | orthorhombic | Pnma | a=17.823 b=7.359 c=12.613 | 1654 | 4.18 | [13] | |
Ba3Sn2S7 | monoclinic | P21/c | a=11.073 b=6.771 c=18.703 β=100.77 Z=4 | 1378 | 4.21 | [13] | |
K2BaSnS4 | R3c | a 25.419 c 7.497 | band gap 3.09 eV; SHG 0.5×AgGaS2 | [78] | |||
Ba6Cu2FeSn4S16 | cubic | I43d | a=14.5260 | band gap 1.2 eV | [59] | ||
Ba6Cu2NiSn4S16 | cubic | I43d | a=14.511 | band gap 0.82 eV | [59] | ||
Ba6Li2ZnSn4S16 | cubic | I43d | a=14.5924 | [79] | |||
Ba6Ag2ZnSn4S16 | cubic | I43d | a=14.6839 | [79] | |||
BaCdSnS4 | orthorhombic | Fdd2 | a=21.57 b=21.76 c=13.110 Z=32 | 6152 | 4.290 | yellow | [80] |
Ba3CdSn2S8 | cubic | I43d | a=14.723 | [81] | |||
Ba6CdAg2Sn4S16 | cubic | I43d | a=14.725 | [81] | |||
La2SnS5 | orthorhombic | Pbam | a=11.22 b=7.915 c=3.97 Z=2 | 352 | 5.26 | [13] | |
[La(dien)3]2[Sn2S6]Cl2 | band gap 3.25 eV | [82] | |||||
La(peha)(μ–SnS4H) peha=pentaethylenehexamine | triclinic | P1 | a 8.609 b 9.327 c 14.649, α 79.2° β 85.5° γ 63.74° | [83] | |||
BaCeSn2S6 | orthorhombic | Pmc21 | a 4.0665 b 19.859 c 11.873 | [84] | |||
BaPrSn2S6 | orthorhombic | Pmc21 | a 4.0478 b 19.8914 c 11.9303 | [84] | |||
BaNdSn2S6 | orthorhombic | Pmc21 | a 4.0098 b 19.761 c 11.841 | [84] | |||
[Nd2(en)6(μ2-OH)2]Sn2S6 | monoclinic | P21/n | a =10.176, b =11.387, c=15.018, β =97.869° | [85] | |||
Nd(peha)(μ–SnS4H) | triclinic | P1 | a 8.621 b 9.372 c 14.656, α 78.28° β 84.33° γ 63.32° | [83] | |||
{Nd(tepa)(μ–OH)}2(μ–Sn2S6)]·H2O tepa=tetraethylenepentamine | monoclinic | C2/c | a=21.537 b=12.863 c=17.697 β=124.308° | [83] | |||
[Nd(dien)3]2[(Sn2S6)Cl2] dien = diethylenetriamine | monoclinic | P21/n | a = 11.672, b = 15.119, c = 14.157, β = 96.213°, Z = 4 | 2483.6 | [86] | ||
[Nd(dien)3]2[(Sn2S6)(SH)2] | monoclinic | P21/n | a = 11.719, b = 15.217, c = 14.221, β = 95.775°, Z = 4 | 2523.1 | [86] | ||
(tetaH)2[Eu2(teta)2(tren)2(μ-Sn2S6)]Sn2S6 | triclinic | P1 | a=9.886 b=10.371 c=17.442 α=89.78 β=88.00 γ=85.14 Z=1 | 1780.8 | 1.898 | light yellow | [60] |
[Eu2(tepa)2(μ-OH)2(μ-Sn2S6)](tepa)0.5·H2O tepa = tetraethylene-pentamine | monoclinic | C2/c | a=19.803 b=14.998 c=17.800 β=126.57 Z=4 | 4246 | 1.970 | colourless | [60] |
[{Eu(en)3}2(μ-OH)2]Sn2S6 | monoclinic | P21/n | a = 10.116, b = 11.379, c = 14.949, β = 98.209°, Z=2 | 1703.1 | [87] | ||
[{Eu(en)3}2(μ-OH)2]Sn2Se6 | monoclinic | P21/n | a = 10.136, b = 11.771, c = 15.423, β = 99.322°, Z = 2 | 1815.8 | [87] | ||
[Eu(dien)3]2[(Sn2S6)(SH)2] | monoclinic | P21/n | a = 11.656, b = 15.168, c = 14.173, β = 95.682°, Z = 2 | 2493.4 | [87] | ||
(tetaH)2[Sm2(teta)2(tren)2(μ-Sn2S6)]Sn2S6 | triclinic | P1 | a=9.920 b=10.382 c=17.520 α=89.91 β=88.07 γ=85.23 Z=1 | 1797.1 | 1.877 | light yellow | [60] |
{Sm(tepa)(μ–OH)}2(μ–Sn2S6)]·H2O | monoclinic | C2/c | a 21.487 b 12.8199 c 17.716 β 124.675° | [83] | |||
[Sm2(en)6(μ2-OH)2]Sn2S6 | monoclinic | P21/n | a 10.129 b 11.377 c 14.962, β 98.128° | [88] | |||
[Sm(dien)3]2[(Sn2S6)Cl2] | monoclinic | P21/n | a 11.631 b 15.091 c 14.1420 β 96.202° | [88] | |||
[Sm(dien)3]2[(Sn2S6)(SH)2] | monoclinic | P21/n | a 11.698 b 15.212 c 14.219, β 95.654° | [88] | |||
[Sm(trien)(tren)(Cl)]2Sn2S6 · en | triclinic | P1 | a 10.320 b 10.491 c 13.791, α 100.524° β 91.930° γ 119.083° | [88] | |||
{Gd(tepa)(μ–OH)}2(μ–Sn2S6)]·H2O | monoclinic | C2/c | a 21.455 b 12.804 c 17.735 β 124.81° | [83] | |||
[Gd2(en)6(μ2-OH)2]Sn2S6 | monoclinic | P21/n | a =10.1053 b =11.357 c =14.924, β = 98.346° | [85] | |||
[Gd(dien)3]2[(Sn2S6)Cl2] dien = diethylenetriamine | monoclinic | P21/n | a =11.662, b =15.168. c 14.185, β =95.696° | [85] | |||
{Dy(tepa)(μ–OH)}2(μ–Sn2S6)]·H2O | monoclinic | C2/c | a 21.363 b 12.717 c 17.654 β 124.915° | [83] | |||
[Hen]2[La(en)4(CuSn3S9)]⋅0.5 en | [89] | ||||||
[Hen]2[Ce(en)4(CuSn3S9)]⋅0.5 en | [89] | ||||||
[Hen]4[Nd(en)4]2[Cu6Sn6S20]⋅3 en | [89] | ||||||
[enH]4[Sm(en)4]2[Cu6Sn6S20]·3en | monoclinic | C2/m | a 14.257 b 24.242 c 13.119 β 92.223° | [90] | |||
[Hen]4[Gd(en)4]2[Cu6Sn6S20]⋅3 en | [89] | ||||||
[enH]4[Ho(en)4]2[Cu6Sn6S20]·3en | monoclinic | C2/m | a 14.3859 b 24.361 c 13.175, β 93.526° | [90] | |||
EuCu2SnS4 | orthorhombic | Ama2 | a=10.4793, b=10.3610, c=6.4015, Z=4 | [91] [92] | |||
[Hen]4[Er(en)4]2[Cu6Sn6S20]⋅3 en | [89] | ||||||
[Hen]4[Er(en)4]2[Ag6Sn6S20]·3en | monoclinic | C2/m | a 14.557 b 24.397 c 13.412 β 94.42° | [93] | |||
[Hen]4[Tm(en)4]2[Ag6Sn6S20]·3en | monoclinic | C2/m | a 14.517 b 24.380 c 13.422 β 94.46° | [93] | |||
[Hen]4[Yb(en)4]2[Ag6Sn6S20]·3en | monoclinic | C2/m | a 14.536 b 24.397 c 13.397, β 94.63° | [93] | |||
Cu6SnWS8 Kiddcreekite | isometric | F43m | a = 10.8178 Z=4 | 1265.9 | 4.934 | grey | [94] |
PtSnS Bowlesite | orthorhombic | Pca21 | a = 6.12 Å, b = 6.12 Å, c = 6.10 Å Z=4 | 228.47 | 10.06 | metallic | [95] |
(Pd,Pt)5(Cu,Fe)4SnTe2S2 Oulankaite | tetragonal | a = 9.044, c = 4.937 Z=2 | 403.8 | 10.27 | metallic | ||
K2Au2SnS4 | triclinic | P1 | a=8.212 b=11.019 c=7.314 α=97.82° β=111.72° γ=72.00° Z=2 | 483.2 | 4.941 | band gap 2.75 eV | [96] [54] |
K2Au2Sn2S6 | tetragonal | P4/mmc | a=7.968 c=19.200 Z=4 | 1219 | 4.914 | band gap 2.30 eV | [96] [54] |
Cs2Au2SnS4 | orthorhombic | Fddd | a = 6.143 b = 14.296 c = 24.578 Z = 4 | 2158.4 | [96] | ||
Ba[Au2SnS4] | orthorhombic | C2221 | a=6.6387 b=11.0605 c=10.9676 Z=1 | 805.32 | 6.418 | red; blue-green luminescent | [96] |
K2Hg3Sn2S8 | [97] | ||||||
Cu2HgSnS4 Velikite | tetrahedral | I42m | a = 5.55, c = 10.91 | 336 | 5.450 | dark grey | [98] |
SrHgSnSe4 | [99] | ||||||
BaHgSnSe4 | orthorhombic | Fdd2 | a 22.441 b 22.760 c 13.579 | [99] | |||
EuHgSnS4 | Ama2 | a=10.3730 b=10.4380 c=6.5680 | SHG 1.77×AgGaS2 | [100] | |||
Tl4SnS4 | 0d | ||||||
Tl2SnS3 | 1d | ||||||
Tl2Sn2S5 | 3d | ||||||
Tl4Sn5S12 | 3d | ||||||
PbSnS2 Teallite | orthorhombic | Pnma | a = 4.26, b = 11.41, c = 4.09 | 198.8 | 6.36 | metallic | |
PbSnS3 Suredaite | orthorhombic | Pnma | a=8.738 b=3.792 c=14.052 Z=4 | 466 | 6.01 | metallic | [13] |
(Pb,Sn)12.5Sn5FeAs3S28 Coiraite | monoclinic | a = 5.84, b = 5.86, c = 17.32 β = 94.14° Z=4 | 591 | 5.92 | dark grey | [101] | |
Fe2+(Pb,Sn2+)6Sn4+2Sb2S14 Franckeite | triclinic | P1 | a = 46.9, b = 5.82, c = 17.3 α = 90°, β = 94.66°, γ = 90° Z=8 | 4701 | 5.90 | black | [102] |
Pb25.7Sn8.3Mn3.4Sb6.4S56.2 Ramosite | monoclinic | a = 5.82, b = 5.92, c = 17.65 β = 99.1° | 600 | [103] | |||
Pb3Sn4FeSb2S14 Cylindrite | triclinic | P1 | 5.46 | black | [104] | ||
Pb6Sn3FeSb3S16 Potosíite | triclinic | grey | |||||
(Pb,Ag)4Sn4FeSb2S15 Incaite | monoclinic | [105] | |||||
Pb2Fe2Sn2Sb2S11 Plumbostannite | dark grey | [106] | |||||
Ba5Pb2Sn3S13 | orthorhombic | Pnma | [107] | ||||
Pb2SnInBiS7 Abramovite | triclinic | P1 | a = 23.4, b = 5.77, c = 5.83 α = 89.1°, β = 89.9°, γ = 91.5° | 786.79 | metallic | [108] | |
Pb8Sn7Cu3(Bi,Sb)3S28 Lévyclaudite | triclinic | P1 | 5.71 | grey | [109] |
The phosphidosilicates or phosphosilicides are inorganic compounds containing silicon bonded to phosphorus and one or more other kinds of elements. In the phosphosilicates each silicon atom is surrounded by four phosphorus atoms in a tetrahedron. The triphosphosilicates have a SiP3 unit, that can be a planar triangle like carbonate CO3. The phosphorus atoms can be shared to form different patterns e.g. [Si2P6]10− which forms pairs, and [Si3P7]3− which contains two-dimensional double layer sheets. [SiP4]8− with isolated tetrahedra, and [SiP2]2− with a three dimensional network with shared tetrahedron corners. SiP clusters can be joined, not only by sharing a P atom, but also by way of a P-P bond. This does not happen with nitridosilicates or plain silicates.
The inorganic imides are compounds containing an ion composed of nitrogen bonded to hydrogen with formula HN2−. Organic imides have the NH group, and two single or one double covalent bond to other atoms. The imides are related to the inorganic amides (H2N−), the nitrides (N3−) and the nitridohydrides (N3−•H−).
The sulfate fluorides are double salts that contain both sulfate and fluoride anions. They are in the class of mixed anion compounds. Some of these minerals are deposited in fumaroles.
The telluride iodides are chemical compounds that contain both telluride ions (Te2−) and iodide ions (I−). They are in the class of mixed anion compounds or chalcogenide halides.
Nitride fluorides containing nitride and fluoride ions with the formula NF4-. They can be electronically equivalent to a pair of oxide ions O24-. Nitride fluorides were discovered in 1996 by Lavalle et al. They heated diammonium technetium hexafluoride to 300 °C to yield TcNF. Another preparation is to heat a fluoride compound with a nitride compound in a solid state reaction. The fluorimido ion is F-N2- and is found in a rhenium compound.
The borosulfates are heteropoly anion compounds which have sulfate groups attached to boron atoms. Other possible terms are sulfatoborates or boron-sulfur oxides. The ratio of sulfate to borate reflects the degree of condensation. With [B(SO4)4]5- there is no condensation, each ion stands alone. In [B(SO4)3]3- the anions are linked into a chain, a chain of loops, or as [B2(SO4)6]6− in a cycle. Finally in [B(SO4)2]− the sulfate and borate tetrahedra are all linked into a two or three-dimensional network. These arrangements of oxygen around boron and sulfur can have forms resembling silicates. The first borosulfate to be discovered was K5[B(SO4)4] in 2012. Over 75 unique compounds are known.
The nitridogermanates are chemical compounds containing germanium atoms bound to nitrogen. The simplest anion is GeN48−, but these are often condensed, with the elimination of nitrogen.
Selenogallates are chemical compounds which contain anionic units of selenium connected to gallium. They can be considered as gallates where selenium substitutes for oxygen. Similar compounds include the thiogallates and selenostannates. They are in the category of chalcogenotrielates or more broadly chalcogenometallates.
A chloride nitride is a mixed anion compound containing both chloride (Cl−) and nitride ions (N3−). Another name is metallochloronitrides. They are a subclass of halide nitrides or pnictide halides.
A Phosphide chloride is a mixed anion compound containing both phosphide (P3−) and chloride (Cl−) ions.
Selenidogermanates are compounds with anions with selenium bound to germanium. They are analogous with germanates, thiogermanates, and telluridogermanates.
Sulfidogermanates or thiogermanates are chemical compounds containing anions with sulfur atoms bound to germanium. They are in the class of chalcogenidotetrelates. Related compounds include thiosilicates, thiostannates, selenidogermanates, telluridogermanates and selenidostannates.
Arsenide bromides or bromide arsenides are compounds containing anions composed of bromide (Br−) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide chlorides, arsenide iodides, phosphide bromides, and antimonide bromides.
Arsenide iodides or iodide arsenides are compounds containing anions composed of iodide (I−) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide chlorides, arsenide bromides, phosphide iodides, and antimonide iodides.
Arsenide chlorides or chloride arsenides are compounds containing anions composed of chloride (Cl−) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide bromides, arsenide iodides, phosphide chlorides, and antimonide chlorides.
Carbide chlorides are mixed anion compounds containing chloride anions and anions consisting entirely of carbon. In these compounds there is no bond between chlorine and carbon. But there is a bond between a metal and carbon. Many of these compounds are cluster compounds, in which metal atoms encase a carbon core, with chlorine atoms surrounding the cluster. The chlorine may be shared between clusters to form polymers or layers. Most carbide chloride compounds contain rare earth elements. Some are known from group 4 elements. The hexatungsten carbon cluster can be oxidised and reduced, and so have different numbers of chlorine atoms included.
Carbide iodides are mixed anion compounds containing iodide and carbide anions. Many carbide iodides are cluster compounds, containing one, two or more carbon atoms in a core, surrounded by a layer of metal atoms, and encased in a shell of iodide ions. These ions may be shared between clusters to form chains, double chains or layers.
Selenidostannates are chemical compounds which contain anionic units of selenium connected to tin. They can be considered as stannates where selenium substitutes for oxygen. Similar compounds include the selenogermanates and thiostannates. They are in the category of chalcogenidotetrelates or more broadly chalcogenometallates.
Tellurogermanates or telluridogermanates are compounds with anions with tellurium bound to germanium. They are analogous with germanates, thiogermanates and selenidogermanates.
In chemistry, a transition metal ether complex is a coordination complex consisting of a transition metal bonded to one or more ether ligand. The inventory of complexes is extensive. Common ether ligands are diethyl ether and tetrahydrofuran. Common chelating ether ligands include the glymes, dimethoxyethane (dme) and diglyme, and the crown ethers. Being lipophilic, metal-ether complexes often exhibit solubility in organic solvents, a property of interest in synthetic chemistry. In contrast, the di-ether 1,4-dioxane is generally a bridging ligand.