Tungsten dichloride dioxide

Last updated
Tungsten dichloride dioxide
WO2Cl2distances.png
Names
IUPAC name
Tungsten(VI) dichloride dioxide
Other names
  • Tungsten(VI) dioxydichloride
  • Tungsten dichloride dioxide
  • Tungstyl chloride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.033.496 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 236-862-1
PubChem CID
  • InChI=1S/2ClH.2O.W/h2*1H;;;/q;;2*-2;/p-2
    Key: DVBXMVWZPVBSJY-UHFFFAOYSA-L
  • InChI=1S/2ClH.2O.W/h2*1H;;;/q;;2*-2;/p-2
  • [O-2].[O-2].[Cl-].[Cl-].[W]
Properties
WO2Cl2
Molar mass 286.74 g·mol−1
AppearanceYellow-red crystals
Density 4.67 g/cm3
Melting point 265 °C (509 °F; 538 K)
Boiling point Sublimes at > 350 °C in vacuum
decomposes
Solubility slightly soluble in ethanol
Structure
orthorhombic
Hazards
GHS labelling: [1]
GHS-pictogram-exclam.svg
Warning
H315, H319, H335
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Tungsten dichloride dioxide, or Tungstyl chloride is the chemical compound with the formula W O 2 Cl 2. It is a yellow-colored solid. It is used as a precursor to other tungsten compounds. Like other tungsten halides, WO2Cl2 is sensitive to moisture, undergoing hydrolysis.

Contents

Preparation

WO2Cl2 is prepared by ligand redistribution reaction from tungsten trioxide and tungsten hexachloride:

2 WO3 + WCl6 → 3 WO2Cl2

Using a two-zone tube furnace, a vacuum-sealed tube containing these solids is heated to 350 °C. The yellow product sublimes to the cooler end of the reaction tube. No redox occurs in this process. [2] An alternative route highlights the oxophilicity of tungsten: [3]

WCl6 + 2 ((CH3)3Si)2O → 3 WO2Cl2 + 4 (CH3)3SiCl

This reaction, like the preceding one, proceeds via the intermediacy of WOCl4.

Structure

Gaseous tungsten dichloride dioxide is a monomer. [4] Solid tungsten dichloride dioxide is a polymer consisting of distorted octahedral W centres. The polymer is characterized by two short W-O distances, typical for a multiple W-O bond, and two long W-O distances more typical of a single or dative W-O bond. [5]

Tungsten forms a number of oxyhalides including WOCl4, WOCl3, WOCl2. The corresponding bromides (WOBr4, WOBr3, WOBr2) are also known as is WO2I2. [6]

Reactions

Structure of the complex
WO2Cl2(dimethoxyethane). WO2Cl2(dme).png
Structure of the complex WO2Cl2(dimethoxyethane).

WO2Cl2 is a Lewis acid, forming soluble adducts of the type WO2Cl2L2, where L is a donor ligand such as bipyridine and dimethoxyethane. Such complexes often cannot be prepared by depolymerization of the inorganic solid, but are generated in situ from WOCl4. [7]

Related Research Articles

<span class="mw-page-title-main">Tungsten hexafluoride</span> Chemical compound

Tungsten(VI) fluoride, also known as tungsten hexafluoride, is an inorganic compound with the formula WF6. It is a toxic, corrosive, colorless gas, with a density of about 13 kg/m3 (22 lb/cu yd). It is the only known gaseous transition metal compound and the densest known gas under standard ambient temperature and pressure. WF6 is commonly used by the semiconductor industry to form tungsten films, through the process of chemical vapor deposition. This layer is used in a low-resistivity metallic "interconnect". It is one of seventeen known binary hexafluorides.

<span class="mw-page-title-main">Titanium tetrachloride</span> Inorganic chemical compound

Titanium tetrachloride is the inorganic compound with the formula TiCl4. It is an important intermediate in the production of titanium metal and the pigment titanium dioxide. TiCl4 is a volatile liquid. Upon contact with humid air, it forms thick clouds of titanium dioxide and hydrochloric acid, a reaction that was formerly exploited for use in smoke machines. It is sometimes referred to as "tickle" or "tickle 4", as a phonetic representation of the symbols of its molecular formula.

<span class="mw-page-title-main">Tetrasulfur tetranitride</span> Chemical compound

Tetrasulfur tetranitride is an inorganic compound with the formula S4N4. This vivid orange, opaque, crystalline explosive is the most important binary sulfur nitride, which are compounds that contain only the elements sulfur and nitrogen. It is a precursor to many S-N compounds and has attracted wide interest for its unusual structure and bonding.

<span class="mw-page-title-main">Tungsten hexachloride</span> Chemical compound

Tungsten hexachloride is an inorganic chemical compound of tungsten and chlorine with the chemical formula WCl6. This dark violet-blue compound exists as volatile crystals under standard conditions. It is an important starting reagent in the preparation of tungsten compounds. Other examples of charge-neutral hexachlorides are rhenium(VI) chloride and molybdenum(VI) chloride. The highly volatile tungsten hexafluoride is also known.

<span class="mw-page-title-main">Sulfur tetrafluoride</span> Chemical compound

Sulfur tetrafluoride is a chemical compound with the formula SF4. It is a colorless corrosive gas that releases dangerous hydrogen fluoride gas upon exposure to water or moisture. Sulfur tetrafluride is a useful reagent for the preparation of organofluorine compounds, some of which are important in the pharmaceutical and specialty chemical industries.

<span class="mw-page-title-main">Vanadium(V) oxytrifluoride</span> Chemical compound

Vanadium(V) oxytrifluoride is a chemical compound with the formula VOF3. It is one of several vanadium(V) oxyhalides. VOF3 is a yellowish orange powder that is sensitive to moisture. Characteristic of early metal fluorides, the structure is polymeric in the solid state. The solid adopts a layered structure but upon evaporation, the species becomes dimeric. In contrast VOCl3 and VOBr3 remain tetrahedral in all states, being volatile liquids at room temperature.

<span class="mw-page-title-main">Rhenium(VII) oxide</span> Chemical compound

Rhenium(VII) oxide is the inorganic compound with the formula Re2O7. This yellowish solid is the anhydride of HOReO3. Perrhenic acid, Re2O7·2H2O, is closely related to Re2O7. Re2O7 is the raw material for all rhenium compounds, being the volatile fraction obtained upon roasting the host ore.

<span class="mw-page-title-main">Tungsten(VI) oxytetrachloride</span> Chemical compound

Tungsten(VI) oxytetrachloride is the inorganic compound with the formula WOCl4. This diamagnetic solid is used to prepare other complexes of tungsten. The red crystalline compound is soluble in nonpolar solvents but it reacts with alcohols and water and forms adducts with Lewis bases.

<span class="mw-page-title-main">Selenium compounds</span> Chemical compounds containing selenium

Selenium compounds are compounds containing the element selenium (Se). Among these compounds, selenium has various oxidation states, the most common ones being −2, +4, and +6. Selenium compounds exist in nature in the form of various minerals, such as clausthalite, guanajuatite, tiemannite, crookesite etc., and can also coexist with sulfide minerals such as pyrite and chalcopyrite. For many mammals, selenium compounds are essential. For example, selenomethionine and selenocysteine are selenium-containing amino acids present in the human body. Selenomethionine participates in the synthesis of selenoproteins. The reduction potential and pKa (5.47) of selenocysteine are lower than those of cysteine, making some proteins have antioxidant activity. Selenium compounds have important applications in semiconductors, glass and ceramic industries, medicine, metallurgy and other fields.

<span class="mw-page-title-main">Organomolybdenum chemistry</span> Chemistry of compounds with Mo-C bonds

Organomolybdenum chemistry is the chemistry of chemical compounds with Mo-C bonds. The heavier group 6 elements molybdenum and tungsten form organometallic compounds similar to those in organochromium chemistry but higher oxidation states tend to be more common.

Selenium monochloride or diselenium dichloride is an inorganic compound with the formula Se2Cl2. Although a common name for the compound is selenium monochloride, reflecting its empirical formula, IUPAC does not recommend that name, instead preferring the more descriptive diselenium dichloride.

<span class="mw-page-title-main">Metal bis(trimethylsilyl)amides</span>

Metal bis(trimethylsilyl)amides are coordination complexes composed of a cationic metal M with anionic bis(trimethylsilyl)amide ligands (the N 2 monovalent anion, or −N 2 monovalent group, and are part of a broader category of metal amides.

<span class="mw-page-title-main">Iridium acetylacetonate</span> Chemical compound

Iridium acetylacetonate is the iridium coordination complex with the formula Ir(O2C5H7)3, which is sometimes known as Ir(acac)3. The molecule has D3-symmetry. It is a yellow-orange solid that is soluble in organic solvents.

<span class="mw-page-title-main">Molybdenum dichloride dioxide</span> Chemical compound

Molybdenum dichloride dioxide is the inorganic compound with the formula MoO2Cl2. It is a yellow diamagnetic solid that is used as a precursor to other molybdenum compounds. Molybdenum dichloride dioxide is one of several oxychlorides of molybdenum.

<span class="mw-page-title-main">(Cyclopentadienyl)titanium trichloride</span> Chemical compound

(Cyclopentadienyl)titanium trichloride is an organotitanium compound with the formula (C5H5)TiCl3. It is a moisture sensitive orange solid. The compound adopts a piano stool geometry.

<span class="mw-page-title-main">Transition metal chloride complex</span> Coordination complex

In chemistry, a transition metal chloride complex is a coordination complex that consists of a transition metal coordinated to one or more chloride ligand. The class of complexes is extensive.

<span class="mw-page-title-main">Transition metal ether complex</span>

In chemistry, a transition metal ether complex is a coordination complex consisting of a transition metal bonded to one or more ether ligand. The inventory of complexes is extensive. Common ether ligands are diethyl ether and tetrahydrofuran. Common chelating ether ligands include the glymes, dimethoxyethane (dme) and diglyme, and the crown ethers. Being lipophilic, metal-ether complexes often exhibit solubility in organic solvents, a property of interest in synthetic chemistry. In contrast, the di-ether 1,4-dioxane is generally a bridging ligand.

<span class="mw-page-title-main">Tungsten hexabromide</span> Chemical compound

Tungsten hexabromide, also known as tungsten(VI) bromide, is a chemical compound of tungsten and bromine with the formula WBr6. It is an air-sensitive dark grey powder that decomposes above 200 °C to tungsten(V) bromide and bromine.

<span class="mw-page-title-main">Molybdenum oxytetrafluoride</span> Chemical compound

Molybdenum oxytetrafluoride is the inorganic compound with the formula MoOF4. It is a white, diamagnetic solid. According to X-ray crystallography, it is a coordination polymer consisting of a linear chain of alternating Mo and F atoms. Each Mo center is octahedral, the coordination sphere being defined by oxide, three terminal fluorides, and two bridging fluorides. In contrast to this motif, tungsten oxytetrafluoride crystallizes as a tetramer, again with bridging fluoride ligands.

<span class="mw-page-title-main">Molybdenum difluoride dioxide</span> Chemical compound

Molybdenum difluoride dioxide is the inorganic compound with the formula MoF2O2. It is a white, diamagnetic, volatile solid.

References

  1. "C&L Inventory". echa.europa.eu. Retrieved 12 December 2021.
  2. Tillack, J. (1973). "Tungsten Oxyhalides". Inorganic Syntheses. Vol. 14. pp. 109–122. doi:10.1002/9780470132456.ch22. ISBN   9780470132456.{{cite book}}: |journal= ignored (help)
  3. Gibson, V. C.; Kee, T. P.; Shaw, A. (1988). "New, improved synthesis of the group 6 oxyhalides, W(O)Cl4, W(O)2Cl2 and Mo(O)2Cl2". Polyhedron . 7 (7): 579–80. doi:10.1016/S0277-5387(00)86336-6.
  4. Ward, Brian G.; Stafford, Fred E. (1968). "Synthesis and Structure of Four- and Five-Coordinated Gaseous Oxohalides of Molybdenum(VI) and Tungsten(VI)". Inorganic Chemistry. 7 (12): 2569–2573. doi:10.1021/ic50070a020.
  5. Jarchow, O.; Schröder, F.; Schulz, H. "Kristallstruktur und Polytypie von WO2Cl2" Zeitschrift für anorganische und allgemeine Chemie 1968, vol. 363, p. 345ff. doi : 10.1002/zaac.19683630108
  6. Holleman, A. F.; Wiberg, E. Inorganic Chemistry Academic Press: San Diego, 2001. ISBN   0-12-352651-5.
  7. K. Dreisch, C. Andersson, C. Stalhandske "Synthesis and structure of dimethoxyethane-dichlorodioxo-tungsten(VI)—a highly soluble derivative of tungsten dioxodichloride" Polyhedron 1991, volume 10, p. 2417. doi : 10.1016/S0277-5387(00)86203-8