Tungsten hexacarbonyl

Last updated
Tungsten hexacarbonyl
Tungsten carbonyl powder.jpg
Tungsten hexacarbonyl.svg
Tungsten hexacarbonyl 3D.png
Tungsten-hexacarbonyl-from-xtal-3D-SF.png
Names
IUPAC name
Hexacarbonyltungsten
Other names
Tungsten carbonyl
Hexacarbonylwolfram
Identifiers
3D model (JSmol)
ECHA InfoCard 100.034.423 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 237-880-2
PubChem CID
  • InChI=1/6CO.W/c6*1-2;
  • O=C=[W](=C=O)(=C=O)(=C=O)(=C=O)=C=O
Properties
C6O6W
Molar mass 351.901 g/mol
AppearanceColorless solid
Density 2.65 g/cm3
Melting point 170 °C (338 °F; 443 K) (decomposes)
insoluble
Solubility sparingly in THF
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Flammable, CO source
Hazards
NFPA 704 (fire diamond)
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
0
0
Safety data sheet (SDS) External SDS
Related compounds
Other cations
Chromium hexacarbonyl
Molybdenum hexacarbonyl


Seaborgium hexacarbonyl [1]

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Tungsten hexacarbonyl (also called tungsten carbonyl) is an organometallic compound with the formula W(CO)6. This complex gave rise to the first example of a dihydrogen complex. [2]

Contents

Like its chromium and molybdenum analogs, this colorless compound is noteworthy as a volatile, air-stable derivative of tungsten in its zero oxidation state.

Preparation, properties, and structure

Like many metal carbonyls, W(CO)6 is generally prepared by "reductive carbonylation", which involves the reduction of a metal halide with under an atmosphere of carbon monoxide. As described in a 2023 survey of methods "most cost-effective routes for the synthesis of group 6 hexacarbonyls are based on the reduction of the metal chlorides (CrCl3, MoCl5 or WCl6) with magnesium, zinc or aluminium powders... under CO pressures". [3] The compound is relatively air-stable. It is sparingly soluble in nonpolar organic solvents. Tungsten carbonyl is widely used in electron beam-induced deposition technique - it is easily vaporized and decomposed by the electron beam providing a convenient source of tungsten atoms. [4]

W(CO)6 adopts an octahedral geometry consisting of six rod-like CO ligands radiating from the central W atom with dipole moment 0 debye.

Reactivity

All reactions of W(CO)6 commence with displacement of some CO ligands in W(CO)6. W(CO)6 behaves similarly to the Mo(CO)6 but tends to form compounds that are kinetically more robust.

Cyclopentadienyltungsten tricarbonyl dimer ((C5H5.)2W2(CO)6) is produced from W(CO)6. CP2W2(CO)6.svg
Cyclopentadienyltungsten tricarbonyl dimer ((C5H5.)2W2(CO)6) is produced from W(CO)6.

Treatment of tungsten hexacarbonyl with sodium cyclopentadienide followed by oxidation of the resulting NaW(CO)3(C5H5) gives cyclopentadienyltungsten tricarbonyl dimer. [5]

One derivative is the dihydrogen complex W(CO)3[P(C6H11)3]2(H2). [2]

Three of these CO ligands can be displaced by acetonitrile. [6] W(CO)6 has been used to desulfurize organosulfur compounds and as a precursor to catalysts for alkene metathesis.

Safety and handling

Like all metal carbonyls, W(CO)6 is a dangerous source of volatile metal as well as CO.

Related Research Articles

<span class="mw-page-title-main">Metallocene</span>

A metallocene is a compound typically consisting of two cyclopentadienyl anions (C
5
H
5
, abbreviated Cp) bound to a metal center (M) in the oxidation state II, with the resulting general formula (C5H5)2M. Closely related to the metallocenes are the metallocene derivatives, e.g. titanocene dichloride or vanadocene dichloride. Certain metallocenes and their derivatives exhibit catalytic properties, although metallocenes are rarely used industrially. Cationic group 4 metallocene derivatives related to [Cp2ZrCH3]+ catalyze olefin polymerization.

<span class="mw-page-title-main">Molybdenum hexacarbonyl</span> Chemical compound

Molybdenum hexacarbonyl (also called molybdenum carbonyl) is the chemical compound with the formula Mo(CO)6. This colorless solid, like its chromium, tungsten, and seaborgium analogues, is noteworthy as a volatile, air-stable derivative of a metal in its zero oxidation state.

<span class="mw-page-title-main">Iron pentacarbonyl</span> Chemical compound

Iron pentacarbonyl, also known as iron carbonyl, is the compound with formula Fe(CO)5. Under standard conditions Fe(CO)5 is a free-flowing, straw-colored liquid with a pungent odour. Older samples appear darker. This compound is a common precursor to diverse iron compounds, including many that are useful in small scale organic synthesis.

<span class="mw-page-title-main">Chromium hexacarbonyl</span> Chemical compound

Chromium hexacarbonyl is a chromium(0) organometallic compound with the formula Cr(CO)6. It is a homoleptic complex, which means that all the ligands are identical. It is a colorless crystalline air-stable solid, with a high vapor pressure.

<span class="mw-page-title-main">Metal carbonyl</span> Coordination complexes of transition metals with carbon monoxide ligands

Metal carbonyls are coordination complexes of transition metals with carbon monoxide ligands. Metal carbonyls are useful in organic synthesis and as catalysts or catalyst precursors in homogeneous catalysis, such as hydroformylation and Reppe chemistry. In the Mond process, nickel tetracarbonyl is used to produce pure nickel. In organometallic chemistry, metal carbonyls serve as precursors for the preparation of other organometallic complexes.

<span class="mw-page-title-main">Molybdenum(V) chloride</span> Chemical compound

Molybdenum(V) chloride is the inorganic compound with the empirical formula MoCl5. This dark volatile solid is used in research to prepare other molybdenum compounds. It is moisture-sensitive and soluble in chlorinated solvents.

<span class="mw-page-title-main">Hapticity</span> Number of contiguous atoms in a ligand that bond to the central atom in a coordination complex

In coordination chemistry, hapticity is the coordination of a ligand to a metal center via an uninterrupted and contiguous series of atoms. The hapticity of a ligand is described with the Greek letter η ('eta'). For example, η2 describes a ligand that coordinates through 2 contiguous atoms. In general the η-notation only applies when multiple atoms are coordinated. In addition, if the ligand coordinates through multiple atoms that are not contiguous then this is considered denticity, and the κ-notation is used once again. When naming complexes care should be taken not to confuse η with μ ('mu'), which relates to bridging ligands.

<span class="mw-page-title-main">Chromocene</span> Chemical compound

Chromocene is the organochromium compound with the formula [Cr(C5H5)2]. Like structurally related metallocenes, chromocene readily sublimes in a vacuum and is soluble in non-polar organic solvents. It is more formally known as bis(η5-cyclopentadienyl)chromium(II).

<span class="mw-page-title-main">Metal nitrosyl complex</span> Complex of a transition metal bonded to nitric oxide: Me–NO

Metal nitrosyl complexes are complexes that contain nitric oxide, NO, bonded to a transition metal. Many kinds of nitrosyl complexes are known, which vary both in structure and coligand.

<span class="mw-page-title-main">Cyclopentadienylmolybdenum tricarbonyl dimer</span> Chemical compound

Cyclopentadienylmolybdenum tricarbonyl dimer is the chemical compound with the formula Cp2Mo2(CO)6, where Cp is C5H5. A dark red solid, it has been the subject of much research although it has no practical uses.

<span class="mw-page-title-main">Molybdenum tetrachloride</span> Chemical compound

Molybdenum tetrachloride is the inorganic compound with the empirical formula MoCl4. The material exists as two polymorphs, both being dark-colored paramagnetic solids. These compounds are mainly of interest as precursors to other molybdenum complexes.

<span class="mw-page-title-main">Organomolybdenum chemistry</span> Chemistry of compounds with Mo-C bonds

Organomolybdenum chemistry is the chemistry of chemical compounds with Mo-C bonds. The heavier group 6 elements molybdenum and tungsten form organometallic compounds similar to those in organochromium chemistry but higher oxidation states tend to be more common.

<span class="mw-page-title-main">(Mesitylene)molybdenum tricarbonyl</span> Chemical compound

(Mesitylene)molybdenum tricarbonyl is an organomolybdenum compound derived from the aromatic compound mesitylene (1,3,5-trimethylbenzene) and molybdenum carbonyl. It exists as pale yellow crystals, which are soluble in organic solvents but decompose when in solution. It has been examined as a catalyst and reagent.

Transition metal carbyne complexes are organometallic compounds with a triple bond between carbon and the transition metal. This triple bond consists of a σ-bond and two π-bonds. The HOMO of the carbyne ligand interacts with the LUMO of the metal to create the σ-bond. The two π-bonds are formed when the two HOMO orbitals of the metal back-donate to the LUMO of the carbyne. They are also called metal alkylidynes—the carbon is a carbyne ligand. Such compounds are useful in organic synthesis of alkynes and nitriles. They have been the focus on much fundamental research.

<span class="mw-page-title-main">Half sandwich compound</span> Class of coordination compounds

Half sandwich compounds, also known as piano stool complexes, are organometallic complexes that feature a cyclic polyhapto ligand bound to an MLn center, where L is a unidentate ligand. Thousands of such complexes are known. Well-known examples include cyclobutadieneiron tricarbonyl and (C5H5)TiCl3. Commercially useful examples include (C5H5)Co(CO)2, which is used in the synthesis of substituted pyridines, and methylcyclopentadienyl manganese tricarbonyl, an antiknock agent in petrol.

<span class="mw-page-title-main">Molybdenum(III) chloride</span> Chemical compound

Molybdenum(III) chloride is the inorganic compound with the formula MoCl3. It forms purple crystals.

<span class="mw-page-title-main">Transition metal nitrile complexes</span> Class of coordination compounds containing nitrile ligands (coordinating via N)

Transition metal nitrile complexes are coordination compounds containing nitrile ligands. Because nitriles are weakly basic, the nitrile ligands in these complexes are often labile.

<span class="mw-page-title-main">Cyclopentadienyltungsten tricarbonyl dimer</span> Chemical compound

Cyclopentadienyltungsten tricarbonyl dimer is the organotungsten compound with the formula Cp2W2(CO)6, where Cp is C5H5. A dark red crystalline solid, it is the subject of research, although it has no or few practical uses.

<span class="mw-page-title-main">Cyclopentadienylchromium tricarbonyl dimer</span> Chemical compound

Cyclopentadienylchromium tricarbonyl dimer is the organochromium compound with the formula Cp2Cr2(CO)6, where Cp is C5H5. A dark green crystalline solid. It is the subject of research it exists in measureable equilibrium quantities with the monometallic radical CpCr(CO)3.

<span class="mw-page-title-main">Transition metal ether complex</span>

In chemistry, a transition metal ether complex is a coordination complex consisting of a transition metal bonded to one or more ether ligand. The inventory of complexes is extensive. Common ether ligands are diethyl ether and tetrahydrofuran. Common chelating ether ligands include the glymes, dimethoxyethane (dme) and diglyme, and the crown ethers. Being lipophilic, metal-ether complexes often exhibit solubility in organic solvents, a property of interest in synthetic chemistry. In contrast, the di-ether 1,4-dioxane is generally a bridging ligand.

References

  1. Even, J.; Yakushev, A.; Dullmann, C. E.; Haba, H.; Asai, M.; Sato, T. K.; Brand, H.; Di Nitto, A.; Eichler, R.; Fan, F. L.; Hartmann, W.; Huang, M.; Jager, E.; Kaji, D.; Kanaya, J.; Kaneya, Y.; Khuyagbaatar, J.; Kindler, B.; Kratz, J. V.; Krier, J.; Kudou, Y.; Kurz, N.; Lommel, B.; Miyashita, S.; Morimoto, K.; Morita, K.; Murakami, M.; Nagame, Y.; Nitsche, H.; et al. (2014). "Synthesis and detection of a seaborgium carbonyl complex". Science. 345 (6203): 1491–3. Bibcode:2014Sci...345.1491E. doi:10.1126/science.1255720. PMID   25237098. S2CID   206558746.(subscription required)
  2. 1 2 Kubas, G. J., Metal Dihydrogen and σ-Bond Complexes, Kluwer Academic/Plenum Publishers: New York, 2001
  3. Bruno, Sofia M.; Valente, Anabela A.; Gonçalves, Isabel S.; Pillinger, Martyn (2023). "Group 6 Carbonyl Complexes of N,O,P-Ligands as Precursors of High-Valent Metal-Oxo Catalysts for Olefin Epoxidation". Coordination Chemistry Reviews. 478: 214983. doi: 10.1016/j.ccr.2022.214983 . S2CID   255329673.
  4. Randolph, S.; Fowlkes, J.; Rack, P. (2006). "Focused, Nanoscale Electron-Beam-Induced Deposition and Etching". Critical Reviews of Solid State and Materials Sciences. 31 (3): 55. Bibcode:2006CRSSM..31...55R. doi:10.1080/10408430600930438. S2CID   93769658.
  5. Manning, A. R.; Hacket, Paul; Birdwhistell, Ralph (1990). Hexacarbonylbis(η5-Cyclopentadienyl)Dichromium, Molybdenum, and Tungsten and their Analogs, M25-C5H4R)2(CO)6 (M = Cr, Mo, and W; R = H, Me or PhCH2). Inorganic Syntheses. Vol. 28. pp. 148–149. doi:10.1002/9780470132593.ch39. ISBN   978-0-470-13259-3.
  6. Kubas, G. J.; van der Sluys, L. S. (1990). "TricarbonylTris(nitrile) Complexes of Cr, Mo, and W". Inorganic Syntheses. Vol. 28. pp. 29–33. doi:10.1002/9780470132593.ch6. ISBN   978-0-470-13259-3.