Terbium(III) bromide

Last updated
Terbium(III) bromide
Kristallstruktur Bismut(III)-iodid.png
Names
Other names
terbium tribromide
Identifiers
3D model (JSmol)
ECHA InfoCard 100.034.932 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 238-442-3
PubChem CID
  • InChI=1S/3BrH.Tb/h3*1H;/q;;;+3/p-3
  • [Br-].[Br-].[Br-].[Tb+3]
Properties
TbBr3
Molar mass 398.637 g/mol
Appearancewhite powder (hexahydrate) [1]
Density 4.62 g/cm3 [2]
Melting point 827 [3]  °C (1,521 °F; 1,100 K)
Boiling point 1,490 [4]  °C (2,710 °F; 1,760 K)
soluble [4]
Hazards
GHS labelling:
GHS-pictogram-exclam.svg
Warning
H315, H319, H335
P261, P264, P271, P280, P302+P352, P304+P340, P305+P351+P338, P312, P321, P332+P313, P337+P313, P362, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Terbium(III) bromide (Tb Br3) is a crystalline chemical compound. [5]

Production and properties

Terbiun(III) bromide can be produced by heating terbium metal or terbium(III) oxide with ammonium bromide. [6]

Tb2O3 + 6 NH4Br → 2 TbBr3 + 6 NH3 + 3 H2O

Solution of terbium(III) bromide can crystallize its hexahydrate. When heating it, it will dehydrate and produce some TbOBr. [7]

Terbium(III) bromide is a white solid that soluble in water. [4] It's crystal structure is same as bismuth iodide. [8]

Related Research Articles

<span class="mw-page-title-main">Erbium</span> Chemical element, symbol Er and atomic number 68

Erbium is a chemical element with the symbol Er and atomic number 68. A silvery-white solid metal when artificially isolated, natural erbium is always found in chemical combination with other elements. It is a lanthanide, a rare-earth element, originally found in the gadolinite mine in Ytterby, Sweden, which is the source of the element's name.

<span class="mw-page-title-main">Terbium</span> Chemical element, symbol Tb and atomic number 65

Terbium is a chemical element with the symbol Tb and atomic number 65. It is a silvery-white, rare earth metal that is malleable, and ductile. The ninth member of the lanthanide series, terbium is a fairly electropositive metal that reacts with water, evolving hydrogen gas. Terbium is never found in nature as a free element, but it is contained in many minerals, including cerite, gadolinite, monazite, xenotime and euxenite.

Neodymium(III) chloride or neodymium trichloride is a chemical compound of neodymium and chlorine with the formula NdCl3. This anhydrous compound is a mauve-colored solid that rapidly absorbs water on exposure to air to form a purple-colored hexahydrate, NdCl3·6H2O. Neodymium(III) chloride is produced from minerals monazite and bastnäsite using a complex multistage extraction process. The chloride has several important applications as an intermediate chemical for production of neodymium metal and neodymium-based lasers and optical fibers. Other applications include a catalyst in organic synthesis and in decomposition of waste water contamination, corrosion protection of aluminium and its alloys, and fluorescent labeling of organic molecules (DNA).

<span class="mw-page-title-main">Europium(III) chloride</span> Chemical compound

Europium(III) chloride is an inorganic compound with the formula EuCl3. The anhydrous compound is a yellow solid. Being hygroscopic it rapidly absorbs water to form a white crystalline hexahydrate, EuCl3·6H2O, which is colourless. The compound is used in research.

<span class="mw-page-title-main">Dysprosium(III) chloride</span> Chemical compound

Dysprosium(III) chloride (DyCl3), also known as dysprosium trichloride, is a compound of dysprosium and chlorine. It is a white to yellow solid which rapidly absorbs water on exposure to moist air to form a hexahydrate, DyCl3·6H2O. Simple rapid heating of the hydrate causes partial hydrolysis to an oxychloride, DyOCl.

<span class="mw-page-title-main">Terbium(III,IV) oxide</span> Chemical compound

Terbium(III,IV) oxide, occasionally called tetraterbium heptaoxide, has the formula Tb4O7, though some texts refer to it as TbO1.75. There is some debate as to whether it is a discrete compound, or simply one phase in an interstitial oxide system. Tb4O7 is one of the main commercial terbium compounds, and the only such product containing at least some Tb(IV) (terbium in the +4 oxidation state), along with the more stable Tb(III). It is produced by heating the metal oxalate, and it is used in the preparation of other terbium compounds. Terbium forms three other major oxides: Tb2O3, TbO2, and Tb6O11.

<span class="mw-page-title-main">Erbium(III) chloride</span> Chemical compound

Erbium(III) chloride is a violet solid with the formula ErCl3. It is used in the preparation of erbium metal.

<span class="mw-page-title-main">Yttrium(III) bromide</span> Chemical compound

Yttrium(III) bromide is an inorganic compound with the chemical formula YBr3. It is a white solid. Anhydrous yttrium(III) bromide can be produced by reacting yttrium oxide or yttrium(III) bromide hydrate and ammonium bromide. The reaction proceeds via the intermediate (NH4)3YBr6. Another method is to react yttrium carbide (YC2) and elemental bromine. Yttrium(III) bromide can be reduced by yttrium metal to YBr or Y2Br3. It can react with osmium to produce Y4Br4Os.

<span class="mw-page-title-main">Ytterbium(III) bromide</span> Chemical compound

Ytterbium(III) bromide (YbBr3) is an inorganic chemical compound.

<span class="mw-page-title-main">Cerium(III) bromide</span> Chemical compound

Cerium(III) bromide is an inorganic compound with the formula CeBr3. This white hygroscopic solid is of interest as a component of scintillation counters.

<span class="mw-page-title-main">Berkelium compounds</span> Any chemical compound having at least one berkelium atom

Berkelium forms a number of chemical compounds, where it normally exists in an oxidation state of +3 or +4, and behaves similarly to its lanthanide analogue, terbium. Like all actinides, berkelium easily dissolves in various aqueous inorganic acids, liberating gaseous hydrogen and converting into the trivalent oxidation state. This trivalent state is the most stable, especially in aqueous solutions, but tetravalent berkelium compounds are also known. The existence of divalent berkelium salts is uncertain and has only been reported in mixed lanthanum chloride-strontium chloride melts. Aqueous solutions of Bk3+ ions are green in most acids. The color of the Bk4+ ions is yellow in hydrochloric acid and orange-yellow in sulfuric acid. Berkelium does not react rapidly with oxygen at room temperature, possibly due to the formation of a protective oxide surface layer; however, it reacts with molten metals, hydrogen, halogens, chalcogens and pnictogens to form various binary compounds. Berkelium can also form several organometallic compounds.

<span class="mw-page-title-main">Terbium(III) nitrate</span> Chemical compound

Terbium(III) nitrate is an inorganic chemical compound, a salt of terbium and nitric acid, with the formula Tb(NO3)3. The hexahydrate crystallizes as triclinic colorless crystals with the formula [Tb(NO3)3(H2O)4]·2H2O. It can be used to synthesize materials with green emission.

<span class="mw-page-title-main">Terbium(IV) fluoride</span> Chemical compound

Terbium(IV) fluoride is an inorganic compound with a chemical formula TbF4. It is a white solid that is a strong oxidizer. It is also a strong fluorinating agent, emitting relatively pure atomic fluorine when heated, rather than the mixture of fluoride vapors emitted from cobalt(III) fluoride or cerium(IV) fluoride. It can be produced by the reaction between very pure terbium(III) fluoride and xenon difluoride, chlorine trifluoride or fluorine gas:

<span class="mw-page-title-main">Californium(III) bromide</span> Chemical compound

Californium(III) bromide is an inorganic compound, a salt with a chemical formula CfBr3. Like in californium oxide (Cf2O3) and other californium halides, including californium(III) fluoride (CfF3), californium(III) chloride, and californium(III) iodide (CfI3), the californium atom has an oxidation state of +3.

<span class="mw-page-title-main">Terbium compounds</span> Chemical compounds with at least one terbium atom

Terbium compounds are compounds formed by the lanthanide metal terbium (Tb). Terbium generally exhibits the +3 oxidation state in these compounds, such as in TbCl3, Tb(NO3)3 and Tb(CH3COO)3. Compounds with terbium in the +4 oxidation state are also known, such as TbO2 and BaTbF6. Terbium can also form compounds in the 0, +1 and +2 oxidation states.

<span class="mw-page-title-main">Dysprosium(III) bromide</span> Chemical compound

Dysprosium(III) bromide is an inorganic compound of bromine and dysprosium, with the chemical formula of DyBr3.

Erbium compounds are compounds containing the element erbium (Er). These compounds are usually dominated by erbium in the +3 oxidation state, although the +2, +1 and 0 oxidation states have also been reported.

Lutetium compounds are compounds formed by the lanthanide metal lutetium (Lu). In these compounds, lutetium generally exhibits the +3 oxidation state, such as LuCl3, Lu2O3 and Lu2(SO4)3. Aqueous solutions of most lutetium salts are colorless and form white crystalline solids upon drying, with the common exception of the iodide. The soluble salts, such as nitrate, sulfate and acetate form hydrates upon crystallization. The oxide, hydroxide, fluoride, carbonate, phosphate and oxalate are insoluble in water.

Actinium compounds are compounds containing the element actinium (Ac). Due to actinium's intense radioactivity, only a limited number of actinium compounds are known. These include: AcF3, AcCl3, AcBr3, AcOF, AcOCl, AcOBr, Ac2S3, Ac2O3, AcPO4 and Ac(NO3)3. Except for AcPO4, they are all similar to the corresponding lanthanum compounds. They all contain actinium in the oxidation state +3. In particular, the lattice constants of the analogous lanthanum and actinium compounds differ by only a few percent.

Americium compounds are compounds containing the element americium (Am). These compounds can form in the +2, +3 and +4, although the +3 oxidation state is the most common. The +5, +6 and +7 oxidation states have also been reported.

References

  1. D. Brown, S. Fletcher, D. G. Holah (1968). "The preparation and crystallographic properties of certain lanthanide and actinide tribromides and tribromide hexahydrates". Journal of the Chemical Society A: Inorganic, Physical, Theoretical: 1889–1894. doi:10.1039/j19680001889. ISSN   0022-4944 . Retrieved 2020-05-29.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. americanelements.com: Terbium Bromide
  3. Sigma-Aldrich Co., product no. 466344.
  4. 1 2 3 CRC Handbook of Chemistry and Physics, 87th Edition, S. 4–94
  5. "Terbium(III) bromide".
  6. Gerd Meyer, Siegfried Dötsch, Thomas Staffel (January 1987). "The ammonium-bromide route to anhydrous rare earth bromides MBr3". Journal of the Less Common Metals. 127: 155–160. doi:10.1016/0022-5088(87)90372-9 . Retrieved 2020-05-29.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. I. Mayer, S. Zolotov (September 1965). "The thermal decomposition of rare earth and yttrium bromide hydrates". Journal of Inorganic and Nuclear Chemistry. 27 (9): 1905–1909. doi:10.1016/0022-1902(65)80042-2 . Retrieved 2020-05-29.
  8. Jean D'Ans, Ellen Lax (1997). Taschenbuch für Chemiker und Physiker. Springer DE. p. 1386. ISBN   354060035-3.