Beryllium bromide

Last updated
Beryllium bromide
Beryllium bromide.svg
EntryWithCollCode92585.png
EntryWithCollCode92587.png
Names
IUPAC name
Beryllium bromide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.029.196 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 232-115-9
PubChem CID
UNII
  • InChI=1S/Be.2BrH/h;2*1H/q+2;;/p-2 Yes check.svgY
    Key: PBKYCFJFZMEFRS-UHFFFAOYSA-L Yes check.svgY
  • InChI=1/Be.2BrH/h;2*1H/q+2;;/p-2
    Key: PBKYCFJFZMEFRS-NUQVWONBAJ
  • Br[Be-2](Br)([Br+]1)[Br+][Be-2]1([Br+]1)[Br+][Be-2]1([Br+]1)[Br+][Be-2]1([Br+]1)[Br+][Be-2]1([Br+]1)[Br+][Be-2]1([Br+]1)[Br+][Be-2]1([Br+]1)[Br+][Be-2]1([Br+]1)[Br+][Be-2]1([Br+]1)[Br+][Be-2]1([Br+]1)[Br+][Be-2]1([Br+]1)[Br+][Be-2]1([Br+]1)[Br+][Be-2]1(Br)Br
Properties
Be Br2
Molar mass 168.820 g/mol
Appearancecolorless white crystals
Density 3.465 g/cm3 (20 °C)
Melting point 508 °C (946 °F; 781 K)sublimes at 473 °C (883 °F; 746 K)
Boiling point 520 °C (968 °F; 793 K) [1]
Highly [1]
Solubility soluble in ethanol, diethyl ether, pyridine
insoluble in benzene
Structure
Orthorhombic
Thermochemistry
0.4111 J/g K
Std molar
entropy
(S298)
9.5395 J/K
-2.094 kJ/g
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
see Berylliosis
GHS labelling:
GHS-pictogram-skull.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
Danger
H301, H315, H317, H319, H330, H335, H350i, H372, H411
P260, P301+P310, P304+P340, P305+P351+P338, P320, P330, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
4
0
0
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 0.002 mg/m3
C 0.005 mg/m3 (30 minutes), with a maximum peak of 0.025 mg/m3 (as Be) [2]
REL (Recommended)
Ca C 0.0005 mg/m3 (as Be) [2]
IDLH (Immediate danger)
Ca [4 mg/m3 (as Be)] [2]
Related compounds
Other anions
Beryllium fluoride
Beryllium chloride
Beryllium iodide
Other cations
Magnesium bromide
Calcium bromide
Strontium bromide
Barium bromide
Radium bromide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Beryllium bromide is the chemical compound with the formula BeBr2. It is very hygroscopic and dissolves well in water. The Be2+ cation, which is relevant to BeBr2, is characterized by the highest known charge density (Z/r = 6.45), making it one of the hardest cations and a very strong Lewis acid. [3]

Contents

Preparation and reactions

It can be prepared by reacting beryllium metal with elemental bromine at temperatures of 500 °C to 700 °C: [1]

Be + Br2 → BeBr2

When the oxidation is conducted on an ether suspension, one obtains colorless dietherate: [4]

Be + Br2 + 2 O(C2H5)2 → BeBr2(O(C2H5)2)2

The same dietherate is obtained by suspending beryllium dibromide in diethyl ether: [5]

BeBr2 2 O(C2H5)2 → BeBr2(O(C2H5)2)2

This ether ligand can be displaced by other Lewis bases.is ether ligand can be displaced by other Lewis bases.

Beryllium bromide hydrolyzes slowly in water: BeBr2 + 2 H2O → 2 HBr + Be(OH)2

Structure

Two forms (polymorphs) of BeBr2 are known. Both structures consist of tetrahedral Be2+ centers interconnected by doubly bridging bromide ligands. One form consist of edge-sharing polytetrahedra. The other form resembles zinc iodide with interconnected adamantane-like cages. [6] [7]

Safety

Beryllium compounds are toxic if inhaled or ingested.

Related Research Articles

Hydrobromic acid is an aqueous solution of hydrogen bromide. It is a strong acid formed by dissolving the diatomic molecule hydrogen bromide (HBr) in water. "Constant boiling" hydrobromic acid is an aqueous solution that distills at 124.3 °C (255.7 °F) and contains 47.6% HBr by mass, which is 8.77 mol/L. Hydrobromic acid is one of the strongest mineral acids known.

<span class="mw-page-title-main">Hydrogen bromide</span> Chemical compound

Hydrogen bromide is the inorganic compound with the formula HBr. It is a hydrogen halide consisting of hydrogen and bromine. A colorless gas, it dissolves in water, forming hydrobromic acid, which is saturated at 68.85% HBr by weight at room temperature. Aqueous solutions that are 47.6% HBr by mass form a constant-boiling azeotrope mixture that boils at 124.3 °C (255.7 °F). Boiling less concentrated solutions releases H2O until the constant-boiling mixture composition is reached.

Iron(II) chloride, also known as ferrous chloride, is the chemical compound of formula FeCl2. It is a paramagnetic solid with a high melting point. The compound is white, but typical samples are often off-white. FeCl2 crystallizes from water as the greenish tetrahydrate, which is the form that is most commonly encountered in commerce and the laboratory. There is also a dihydrate. The compound is highly soluble in water, giving pale green solutions.

<span class="mw-page-title-main">Molybdenum(V) chloride</span> Chemical compound

Molybdenum(V) chloride is the inorganic compound with the empirical formula MoCl5. This dark volatile solid is used in research to prepare other molybdenum compounds. It is moisture-sensitive and soluble in chlorinated solvents.

<span class="mw-page-title-main">Arsenic tribromide</span> Chemical compound

Arsenic tribromide is an inorganic compound with the formula AsBr3, it is a bromide of arsenic. Arsenic is a chemical element that has the symbol As and atomic number 33. This pyramidal molecule is the only known binary arsenic bromide. AsBr3 is noteworthy for its very high refractive index of approximately 2.3. It also has a very high diamagnetic susceptibility. The compound exists as colourless deliquescent crystals that fume in moist air.

<span class="mw-page-title-main">Iron(II) bromide</span> Chemical compound

Iron(II) bromide refers to inorganic compounds with the chemical formula FeBr2(H2O)x. The anhydrous compound (x = 0) is a yellow or brownish-colored paramagnetic solid. The tetrahydrate is also known, all being pale colored solids. They are common precursor to other iron compounds.

<span class="mw-page-title-main">Cadmium bromide</span> Chemical compound

Cadmium bromide is the inorganic compound with the formula CdBr2. It is a white hygroscopic solid. It also can be obtained as a mono- and tetrahydrate. It has few applications.

<span class="mw-page-title-main">Indium(III) bromide</span> Chemical compound

Indium(III) bromide, (indium tribromide), InBr3, is a chemical compound of indium and bromine. It is a Lewis acid and has been used in organic synthesis.

<span class="mw-page-title-main">Copper(I) bromide</span> Chemical compound

Copper(I) bromide is the chemical compound with the formula CuBr. This white diamagnetic solid adopts a polymeric structure akin to that for zinc sulfide. The compound is widely used in the synthesis of organic compounds and as a lasing medium in copper bromide lasers.

<span class="mw-page-title-main">Basic beryllium acetate</span> Chemical compound

Basic beryllium acetate is the chemical compound with the formula Be4O(O2CCH3)6. This compound adopts a distinctive structure, but it has no applications and has been only lightly studied. It is a colourless solid that is soluble in organic solvents.

<span class="mw-page-title-main">Magnesium bromide</span> Chemical compound

Magnesium bromide are inorganic compounds with the chemical formula MgBr2(H2O)x, where x can range from 0 to 9. They are all white deliquescent solids. Some magnesium bromides have been found naturally as rare minerals such as: bischofite and carnallite.

<span class="mw-page-title-main">Beryllium chloride</span> Chemical compound

Beryllium chloride is an inorganic compound with the formula BeCl2. It is a colourless, hygroscopic solid that dissolves well in many polar solvents. Its properties are similar to those of aluminium chloride, due to beryllium's diagonal relationship with aluminium.

<span class="mw-page-title-main">Group 2 organometallic chemistry</span>

Group 2 organometallic chemistry refers to the chemistry of compounds containing carbon bonded to any group 2 element. By far the most common group 2 organometallic compounds are the magnesium-containing Grignard reagents which are widely used in organic chemistry. Other organometallic group 2 compounds are rare and are typically limited to academic interests.

<span class="mw-page-title-main">Beryllium iodide</span> Chemical compound

Beryllium iodide is an inorganic compound with the chemical formula BeI2. It is a hygroscopic white solid. The Be2+ cation, which is relevant to salt-like BeI2, is characterized by the highest known charge density (Z/r = 6.45), making it one of the hardest cations and a very strong Lewis acid.

<span class="mw-page-title-main">Nickel(II) bromide</span> Chemical compound

Nickel(II) bromide is the name for the inorganic compounds with the chemical formula NiBr2(H2O)x. The value of x can be 0 for the anhydrous material, as well as 2, 3, or 6 for the three known hydrate forms. The anhydrous material is a yellow-brown solid which dissolves in water to give blue-green hexahydrate (see picture).

Organorhenium chemistry describes the compounds with Re−C bonds. Because rhenium is a rare element, relatively few applications exist, but the area has been a rich source of concepts and a few useful catalysts.

<span class="mw-page-title-main">Beryllium borohydride</span> Chemical compound

Beryllium borohydride is an inorganic compound with the chemical formula Be[BH4]2.

<span class="mw-page-title-main">Chromium(III) bromide</span> Chemical compound

Chromium(III) bromide is an inorganic compound with the chemical formula CrBr3. It is a dark colored solid that appears green in transmitted light but red with reflected light. It is used as a precursor to catalysts for the oligomerization of ethylene.

<span class="mw-page-title-main">Chromium(II) bromide</span> Chemical compound

Chromium(II) bromide is the inorganic compound with the chemical formula CrBr2. Like many metal dihalides, CrBr2 adopts the "cadmium iodide structure" motif, i.e., it features sheets of octahedral Cr(II) centers interconnected by bridging bromide ligands. It is a white solid that dissolves in water to give blue solutions that are readily oxidized by air.

<span class="mw-page-title-main">Organoberyllium chemistry</span> Organoberyllium Complex in Main Group Chemistry

Organoberyllium chemistry involves the synthesis and properties of organometallic compounds featuring the group 2 alkaline earth metal beryllium (Be). The area remains less developed relative to the chemistry of other main-group elements, because Be compounds are toxic and few applications have been found.

References

  1. 1 2 3 Perry, Dale L.; Phillips, Sidney L. (1995), Handbook of Inorganic Compounds, CRC Press, pp. 61–62, ISBN   0-8493-8671-3 , retrieved 2007-12-10
  2. 1 2 3 NIOSH Pocket Guide to Chemical Hazards. "#0054". National Institute for Occupational Safety and Health (NIOSH).
  3. Buchner, M. R. (2017-01-01), "Beryllium Chemistry", Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier, ISBN   978-0-12-409547-2 , retrieved 2022-10-27
  4. Paparo, Albert; Jones, Cameron (2019-02-01). "Beryllium Halide Complexes Incorporating Neutral or Anionic Ligands: Potential Precursors for Beryllium Chemistry". Chemistry: An Asian Journal. 14 (3): 486–490. doi:10.1002/asia.201801800. ISSN   1861-4728. PMID   30604490. S2CID   58632466.
  5. Paparo, Albert; Jones, Cameron (2019-02-01). "Beryllium Halide Complexes Incorporating Neutral or Anionic Ligands: Potential Precursors for Beryllium Chemistry". Chemistry: An Asian Journal. 14 (3): 486–490. doi:10.1002/asia.201801800. ISSN   1861-4728. PMID   30604490. S2CID   58632466.
  6. Buchner, Magnus R.; Dankert, Fabian; Spang, Nils; Pielnhofer, Florian; von Hänisch, Carsten (2020). "A Second Modification of Beryllium Bromide: β-BeBr2". Inorganic Chemistry. 59 (23): 16783–16788. doi: 10.1021/acs.inorgchem.0c02832 . PMID   33185106. S2CID   226850424.
  7. Troyanov, S. I. (2000). "Crystal Modifications of Beryllium Dihalides BeCl2, BeBr2, and BeI2". Zhurnal Neorganicheskoi Khimii. 45: 1619-1624.