Californium(III) bromide

Last updated
Californium(III) bromide
Cf bromid.jpg
Names
IUPAC name
Californium(III) bromide
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/3BrH.Cf/h3*1H;/p-3
    Key: NJIJEQJUGGORBI-UHFFFAOYSA-K
  • [Br-].[Br-].[Br-].[Cf]
Properties
Br3Cf
Molar mass 491 g·mol−1
Appearancegreen solid
Structure
Monoclinic, mS16
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Californium(III) bromide is an inorganic compound, a salt with a chemical formula CfBr3. Like in californium oxide (Cf2O3) and other californium halides, including californium(III) fluoride (CfF3), californium(III) chloride, and californium(III) iodide (CfI3), the californium atom has an oxidation state of +3.

Contents

Properties

Californium(III) bromide is shown to crystallize in both the AlCl3 and FeCl3 type structures. In the former structure, the californium ion is six coordinated and the three independent Cf-Br bond lengths are 279.5±0.9 pm, 282.7±1.1 pm, and 282.8±0.8 pm. [1]

Californium(III) bromide partially decomposes into californium(II) bromide under high temperature. [2]

In the radioactive decay of berkelium-249 to californium-249, the oxidation number and crystal structure are preserved. The six-coordinate berkelium(III) bromide (AlCl3-type monoclinic structure) decays to produce a six-coordinate californium(III) bromide, whereas an eight-coordinate berkelium(III) bromide (PuBr3-type, orthorhombic structure) produces an eight-coordinate californium(III) bromide. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Berkelium</span> Chemical element, symbol Bk and atomic number 97

Berkelium is a synthetic chemical element; it has symbol Bk and atomic number 97. It is a member of the actinide and transuranium element series. It is named after the city of Berkeley, California, the location of the Lawrence Berkeley National Laboratory where it was discovered in December 1949. Berkelium was the fifth transuranium element discovered after neptunium, plutonium, curium and americium.

<span class="mw-page-title-main">Einsteinium</span> Chemical element, symbol Es and atomic number 99

Einsteinium is a synthetic chemical element; it has symbol Es and atomic number 99. Einsteinium is a member of the actinide series and it is the seventh transuranium element. It was named in honor of Albert Einstein.

<span class="mw-page-title-main">Arsenic tribromide</span> Chemical compound

Arsenic tribromide is an inorganic compound with the formula AsBr3, it is a bromide of arsenic. Arsenic is a chemical element that has the symbol As and atomic number 33. This pyramidal molecule is the only known binary arsenic bromide. AsBr3 is noteworthy for its very high refractive index of approximately 2.3. It also has a very high diamagnetic susceptibility. It is a poisonous metalloid that has many allotropic forms: yellow and several black and gray forms (metalloids), orthorhombic prisms, colorless rhombic crystals are a few that are seen. Bromine is a halogen element with the symbol Br and atomic number 35. Diatomic bromine does not occur naturally, but bromine salts can be found in crustal rock.

<span class="mw-page-title-main">Gallium(III) bromide</span> Chemical compound

Gallium(III) bromide (GaBr3) is a chemical compound, and one of four gallium trihalides.

Tin(II) bromide is a chemical compound of tin and bromine with a chemical formula of SnBr2. Tin is in the +2 oxidation state. The stability of tin compounds in this oxidation state is attributed to the inert pair effect.

Bromine compounds are compounds containing the element bromine (Br). These compounds usually form the -1, +1, +3 and +5 oxidation states. Bromine is intermediate in reactivity between chlorine and iodine, and is one of the most reactive elements. Bond energies to bromine tend to be lower than those to chlorine but higher than those to iodine, and bromine is a weaker oxidising agent than chlorine but a stronger one than iodine. This can be seen from the standard electrode potentials of the X2/X couples (F, +2.866 V; Cl, +1.395 V; Br, +1.087 V; I, +0.615 V; At, approximately +0.3 V). Bromination often leads to higher oxidation states than iodination but lower or equal oxidation states to chlorination. Bromine tends to react with compounds including M–M, M–H, or M–C bonds to form M–Br bonds.

<span class="mw-page-title-main">Indium(III) bromide</span> Chemical compound

Indium(III) bromide, (indium tribromide), InBr3, is a chemical compound of indium and bromine. It is a Lewis acid and has been used in organic synthesis.

There are three sets of Indium halides, the trihalides, the monohalides, and several intermediate halides. In the monohalides the oxidation state of indium is +1 and their proper names are indium(I) fluoride, indium(I) chloride, indium(I) bromide and indium(I) iodide.

There are three sets of gallium halides, the trihalides where gallium has oxidation state +3, the intermediate halides containing gallium in oxidation states +1, +2 and +3 and some unstable monohalides, where gallium has oxidation state +1.

<span class="mw-page-title-main">Bismuth tribromide</span> Chemical compound

Bismuth tribromide is an inorganic compound of bismuth and bromine with the chemical formula BiBr3.

<span class="mw-page-title-main">Californium compounds</span>

Few compounds of californium have been made and studied. The only californium ion that is stable in aqueous solutions is the californium(III) cation. The other two oxidation states are IV (strong oxidizing agents) and II (strong reducing agents). The element forms a water-soluble chloride, nitrate, perchlorate, and sulfate and is precipitated as a fluoride, oxalate or hydroxide. If problems of availability of the element could be overcome, then CfBr2 and CfI2 would likely be stable.

<span class="mw-page-title-main">Berkelium compounds</span> Any chemical compound having at least one berkelium atom

Berkelium forms a number of chemical compounds, where it normally exists in an oxidation state of +3 or +4, and behaves similarly to its lanthanide analogue, terbium. Like all actinides, berkelium easily dissolves in various aqueous inorganic acids, liberating gaseous hydrogen and converting into the trivalent oxidation state. This trivalent state is the most stable, especially in aqueous solutions, but tetravalent berkelium compounds are also known. The existence of divalent berkelium salts is uncertain and has only been reported in mixed lanthanum chloride-strontium chloride melts. Aqueous solutions of Bk3+ ions are green in most acids. The color of the Bk4+ ions is yellow in hydrochloric acid and orange-yellow in sulfuric acid. Berkelium does not react rapidly with oxygen at room temperature, possibly due to the formation of a protective oxide surface layer; however, it reacts with molten metals, hydrogen, halogens, chalcogens and pnictogens to form various binary compounds. Berkelium can also form several organometallic compounds.

<span class="mw-page-title-main">Berkelium(IV) oxide</span> Chemical compound

Berkelium(IV) oxide, also known as berkelium dioxide, is a chemical compound with the formula BkO2. This compound slowly decays to californium(IV) oxide. It can be converted to berkelium(III) oxide by hydrogen reduction at 600 °C.

Curium compounds are compounds containing the element curium (Cm). Curium usually forms compounds in the +3 oxidation state, although compounds with curium in the +4, +5 and +6 oxidation states are also known.

Curium(III) bromide is the bromide salt of curium. It has an orthorhombic crystal structure.

Einsteinium compounds are compounds that contain the element einsteinium (Es). These compounds largely have einsteinium in the +3 oxidation state, or in some cases in the +2 and +4 oxidation states. Although einsteinium is relatively stable, with half-lives ranging from 20 days upwards, these compounds have not been studied in great detail.

<span class="mw-page-title-main">Berkelium(III) chloride</span> Chemical compound

Berkelium(III) chloride also known as berkelium trichloride, is a chemical compound with the formula BkCl3. It is a water-soluble green salt with a melting point of 603 °C. This compound forms the hexahydrate, BkCl3·6H2O.

Americium compounds are compounds containing the element americium (Am). These compounds can form in the +2, +3, and +4, although the +3 oxidation state is the most common. The +5, +6 and +7 oxidation states have also been reported.

<span class="mw-page-title-main">Berkelium(III) bromide</span> Chemical compound

Berkelium bromide is a bromide of berkelium, with the chemical formula BkBr3.

References

  1. Burns, John H.; Peterson, J.R.; Stevenson, J.N. (March 1975). "Crystallographic studies of some transuranic trihalides: 239PuCl3, 244CmBr3, 249BkBr3 and 249CfBr3". Journal of Inorganic and Nuclear Chemistry. 37 (3): 743–749. doi:10.1016/0022-1902(75)80532-X.
  2. Young, J. P.; Vander Sluis, Kenneth L.; Werner, G. K.; Peterson, J. R.; Noé, M. (December 1975). "High temperature spectroscopic and X-ray diffraction studies of californium tribromide: Proof of thermal reduction to californium(II)". Journal of Inorganic and Nuclear Chemistry. 37 (12): 2497–2501. doi:10.1016/0022-1902(75)80878-5.
  3. Young, J. P.; Haire, R. G.; Peterson, J. R.; Ensor, D. D.; Fellows, R. L. (1980-08-01). "Chemical consequences of radioactive decay. 1. Study of californium-249 ingrowth into crystalline berkelium-249 tribromide: a new crystalline phase of californium tribromide". Inorganic Chemistry. 19 (8): 2209–2212. doi:10.1021/ic50210a003.