Names | |
---|---|
IUPAC name tribromostibane | |
Other names Antimony(III) bromide | |
Identifiers | |
3D model (JSmol) | |
ChemSpider | |
ECHA InfoCard | 100.029.254 |
EC Number |
|
PubChem CID | |
RTECS number |
|
UNII | |
UN number | 1549 |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
SbBr3 | |
Molar mass | 361.472 g/mol |
Appearance | colorless to yellow crystals hygroscopic |
Density | 4.35 g/cm3 |
Melting point | 96.6 °C (205.9 °F; 369.8 K) |
Boiling point | 288 °C (550 °F; 561 K) |
soluble,partial hydrolysis | |
Solubility | soluble in dilute HCl, HBr, CS2, acetone, benzene, chloroform, ammonia, alcohol |
-115.0·10−6 cm3/mol | |
Refractive index (nD) | 1.74 |
2.47 D | |
Structure | |
Orthorhombic, oP16, SpaceGroup = Pnma, No. 62 (β form) | |
Thermochemistry | |
Heat capacity (C) | 96 J/mol K |
Std enthalpy of formation (ΔfH⦵298) | -259 kJ/mol |
Hazards | |
GHS labelling: | |
Warning | |
H302, H332, H411 | |
P261, P264, P270, P271, P273, P301+P312, P304+P312, P304+P340, P312, P330, P391, P501 | |
Lethal dose or concentration (LD, LC): | |
LD50 (median dose) | 7000 mg/kg |
NIOSH (US health exposure limits): | |
PEL (Permissible) | TWA 0.5 mg/m3 (as Sb) [1] |
REL (Recommended) | TWA 0.5 mg/m3 (as Sb) [1] |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Antimony tribromide (Sb Br3) is a chemical compound containing antimony in its +3 oxidation state.
Antimony tribromide may be made by the reaction of antimony with elemental bromine, or by the reaction of antimony trioxide with hydrobromic acid.
Alternatively, it can be prepared by the action of bromine on a mixture of antimony sulfide and antimony trioxide at 250 °C.
Antimony tribromide has two crystalline forms, both having orthorhombic symmetries. When a warm carbon disulfide solution of SbBr3 is rapidly cooled, it crystallizes into the needle-like α-SbBr3, which then slowly converts to the more stable β form. [2]
Antimony tribromide hydrolyzes in water to form hydrobromic acid and antimony trioxide:
It can be added to polymers such as polyethylene as a fire retardant. [3] It is also used in the production of other antimony compounds, in chemical analysis, as a mordant, and in dyeing. [4]
Antimony is a chemical element; it has symbol Sb (from Latin stibium) and atomic number 51. A lustrous gray metalloid, it is found in nature mainly as the sulfide mineral stibnite (Sb2S3). Antimony compounds have been known since ancient times and were powdered for use as medicine and cosmetics, often known by the Arabic name kohl. The earliest known description of the metalloid in the West was written in 1540 by Vannoccio Biringuccio.
Bromine is a chemical element; it has symbol Br and atomic number 35. It is a volatile red-brown liquid at room temperature that evaporates readily to form a similarly coloured vapour. Its properties are intermediate between those of chlorine and iodine. Isolated independently by two chemists, Carl Jacob Löwig and Antoine Jérôme Balard, its name was derived from the Ancient Greek βρῶμος (bromos) meaning "stench", referring to its sharp and pungent smell.
Antimony(III) oxide is the inorganic compound with the formula Sb2O3. It is the most important commercial compound of antimony. It is found in nature as the minerals valentinite and senarmontite. Like most polymeric oxides, Sb2O3 dissolves in aqueous solutions with hydrolysis. A mixed arsenic-antimony oxide occurs in nature as the very rare mineral stibioclaudetite.
Arsenous acid (or arsenious acid) is the inorganic compound with the formula H3AsO3. It is known to occur in aqueous solutions, but it has not been isolated as a pure material, although this fact does not detract from the significance of As(OH)3.
Arsenic pentoxide is the inorganic compound with the formula As2O5. This glassy, white, deliquescent solid is relatively unstable, consistent with the rarity of the As(V) oxidation state. More common, and far more important commercially, is arsenic(III) oxide (As2O3). All inorganic arsenic compounds are highly toxic and thus find only limited commercial applications.
Boron tribromide, BBr3, is a colorless, fuming liquid compound containing boron and bromine. Commercial samples usually are amber to red/brown, due to weak bromine contamination. It is decomposed by water and alcohols.
Arsenic tribromide is an inorganic compound with the formula AsBr3, it is a bromide of arsenic. Arsenic is a chemical element that has the symbol As and atomic number 33. This pyramidal molecule is the only known binary arsenic bromide. AsBr3 is noteworthy for its very high refractive index of approximately 2.3. It also has a very high diamagnetic susceptibility. It is a poisonous metalloid that has many allotropic forms: yellow and several black and gray forms (metalloids), orthorhombic prisms, colorless rhombic crystals are a few that are seen. Bromine is a halogen element with the symbol Br and atomic number 35. Diatomic bromine does not occur naturally, but bromine salts can be found in crustal rock.
Gold(III) bromide is a dark-red to black crystalline solid. It has the empirical formula AuBr3, but exists primarily as a dimer with the molecular formula Au2Br6 in which two gold atoms are bridged by two bromine atoms. It is commonly referred to as gold(III) bromide, gold tribromide, and rarely but traditionally auric bromide, and sometimes as digold hexabromide. As is similar with the other gold halides, this compound is unique for being a coordination complex of a group 11 transition metal that is stable in an oxidation state of +3 whereas copper or silver complexes persist in oxidation states of +1 or +2.
Antimony pentoxide (molecular formula: Sb2O5) is a chemical compound of antimony and oxygen. It contains antimony in the +5 oxidation state.
Antimony trichloride is the chemical compound with the formula SbCl3. It is a soft colorless solid with a pungent odor and was known to alchemists as butter of antimony.
Gallium(III) bromide (GaBr3) is a chemical compound, and one of four gallium trihalides.
Antimony triiodide is the chemical compound with the formula SbI3. This ruby-red solid is the only characterized "binary" iodide of antimony, i.e. the sole compound isolated with the formula SbxIy. It contains antimony in its +3 oxidation state. Like many iodides of the heavier main group elements, its structure depends on the phase. Gaseous SbI3 is a molecular, pyramidal species as anticipated by VSEPR theory. In the solid state, however, the Sb center is surrounded by an octahedron of six iodide ligands, three of which are closer and three more distant. For the related compound BiI3, all six Bi—I distances are equal.
Tin(II) bromide is a chemical compound of tin and bromine with a chemical formula of SnBr2. Tin is in the +2 oxidation state. The stability of tin compounds in this oxidation state is attributed to the inert pair effect.
Bromine compounds are compounds containing the element bromine (Br). These compounds usually form the -1, +1, +3 and +5 oxidation states. Bromine is intermediate in reactivity between chlorine and iodine, and is one of the most reactive elements. Bond energies to bromine tend to be lower than those to chlorine but higher than those to iodine, and bromine is a weaker oxidising agent than chlorine but a stronger one than iodine. This can be seen from the standard electrode potentials of the X2/X− couples (F, +2.866 V; Cl, +1.395 V; Br, +1.087 V; I, +0.615 V; At, approximately +0.3 V). Bromination often leads to higher oxidation states than iodination but lower or equal oxidation states to chlorination. Bromine tends to react with compounds including M–M, M–H, or M–C bonds to form M–Br bonds.
Calcium bromide is the name for compounds with the chemical formula CaBr2(H2O)x. Individual compounds include the anhydrous material (x = 0), the hexahydrate (x = 6), and the rare dihydrate (x = 2). All are white powders that dissolve in water, and from these solutions crystallizes the hexahydrate. The hydrated form is mainly used in some drilling fluids.
Organobromine chemistry is the study of the synthesis and properties of organobromine compounds, also called organobromides, which are organic compounds that contain carbon bonded to bromine. The most pervasive is the naturally produced bromomethane.
Bismuth tribromide is an inorganic compound of bismuth and bromine with the chemical formula BiBr3.
Tribromide is the anion with the chemical formula Br3−, or salts containing it:
Scandium bromide, or ScBr3, is a trihalide, hygroscopic, water-soluble chemical compound of scandium and bromine.
Tungsten hexabromide, also known as tungsten(VI) bromide, is a chemical compound of tungsten and bromine with the formula WBr6. It is an air-sensitive dark grey powder that decomposes above 200 °C to tungsten(V) bromide and bromine.