Antimony(III) sulfate

Last updated
Antimony sulfate
Antimony sulfate.svg
Names
IUPAC name
Antimony(III) sulfate
Other names
Antimonous sulfate
Antimony trisulfate
Diantimony trisulfate
Diantimony tris(sulphate)
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.028.370 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 231-207-6
PubChem CID
UNII
  • InChI=1S/3H2O4S.2Sb/c3*1-5(2,3)4;;/h3*(H2,1,2,3,4);;/q;;;2*+3/p-6 Yes check.svgY
    Key: MVMLTMBYNXHXFI-UHFFFAOYSA-H Yes check.svgY
  • [SbH3+3].[SbH3+3].[O-]S(=O)(=O)[O-].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O
Properties [1]
Sb2(SO4)3
Molar mass 531.7078 g/mol
Density 3.94 g/cm3 [2]
Hydrolysis [2]
Structure [2]
monoclinic
P21/c
a = 13.12 Å, b = 4.75 Å, c = 17.55 Å
α = 90°, β = 126.3°, γ = 90°
881 Å3
Hazards
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 0.5 mg/m3 (as Sb) [3]
REL (Recommended)
TWA 0.5 mg/m3 (as Sb) [3]
Safety data sheet (SDS) MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN (what is  Yes check.svgYX mark.svgN ?)

Antimony sulfate, Sb2(SO4)3, is a hygroscopic salt formed by reacting antimony or its compounds with hot sulfuric acid. It is used in doping of semiconductors and in the production of explosives and fireworks. [4]

Contents

Structure

Antimony(III) sulfate consists of interconnected SbO6 octahedra, which the corners are bonded to the sulfate ion. [2]

Production

Antimony(III) sulfate was first produced in 1827 by the reaction of antimony(III) oxide and 18 molar sulfuric acid at 200 °C: [2]

Sb2O3 + 3 H2SO4 → Sb2(SO4)3 + 3 H2O

The concentration of the sulfuric acid is important, as a lower concentration will produce basic antimony oxides, while a higher concentration will produce antimony(III) pyrosulfate. The reaction of elemental antimony and 18 M sulfuric acid will also produce antimony(III) sulfate: [4]

2 Sb + 6 H2SO4 → Sb2(SO4)3 + 3 SO2 + 6 H2O

Chemical properties

Antimony sulfate is deliquescent, hydrolyzing in moist air and water, producing various basic antimony oxides and antimony(III) oxide. It is soluble in acids. [2] [4] [5]

Uses

Owing to its solubility, antimony sulfate has uses in the doping of semiconductors. [6] It is also used for coating anodes in electrolysis and in the production of explosives and fireworks. [4]

Safety

Antimony(III) sulfate causes irritation to the skin and mucous membranes. [7]

Natural occurrence

Natural analogue of the exact compound is yet unknown. However, basic hydrated Sb sulfates are known as the minerals klebelsbergite [8] [9] and coquandite. [10] [9]

Related Research Articles

<span class="mw-page-title-main">Sulfuric acid</span> Chemical compound (H₂SO₄)

Sulfuric acid or sulphuric acid, known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen, and hydrogen, with the molecular formula H2SO4. It is a colorless, odorless, and viscous liquid that is miscible with water.

<span class="mw-page-title-main">Iron(II) sulfate</span> Chemical compound

Iron(II) sulfate (British English: iron(II) sulphate) or ferrous sulfate denotes a range of salts with the formula Fe SO4·xH2O. These compounds exist most commonly as the heptahydrate (x = 7) but several values for x are known. The hydrated form is used medically to treat or prevent iron deficiency, and also for industrial applications. Known since ancient times as copperas and as green vitriol (vitriol is an archaic name for sulfate), the blue-green heptahydrate (hydrate with 7 molecules of water) is the most common form of this material. All the iron(II) sulfates dissolve in water to give the same aquo complex [Fe(H2O)6]2+, which has octahedral molecular geometry and is paramagnetic. The name copperas dates from times when the copper(II) sulfate was known as blue copperas, and perhaps in analogy, iron(II) and zinc sulfate were known respectively as green and white copperas.

<span class="mw-page-title-main">Lead(II) sulfate</span> Chemical compound

Lead(II) sulfate (PbSO4) is a white solid, which appears white in microcrystalline form. It is also known as fast white, milk white, sulfuric acid lead salt or anglesite.

<span class="mw-page-title-main">Zinc sulfate</span> Chemical compound

Zinc sulfate describes a family of inorganic compounds with the formula ZnSO4(H2O)x. All are colorless solids. The most common form includes water of crystallization as the heptahydrate, with the formula ZnSO4·7H2O. As early as the 16th century it was prepared on the large scale, and was historically known as "white vitriol" (the name was used, for example, in 1620s by the collective writing under the pseudonym of Basil Valentine). Zinc sulfate and its hydrates are colourless solids.

<span class="mw-page-title-main">Calcium sulfate</span> Laboratory and industrial chemical

Calcium sulfate (or calcium sulphate) is the inorganic compound with the formula CaSO4 and related hydrates. In the form of γ-anhydrite (the anhydrous form), it is used as a desiccant. One particular hydrate is better known as plaster of Paris, and another occurs naturally as the mineral gypsum. It has many uses in industry. All forms are white solids that are poorly soluble in water. Calcium sulfate causes permanent hardness in water.

<span class="mw-page-title-main">Cerium(IV) sulfate</span> Chemical compound

Cerium(IV) sulfate, also called ceric sulfate, is an inorganic compound. It exists as the anhydrous salt Ce(SO4)2 as well as a few hydrated forms: Ce(SO4)2(H2O)x, with x equal to 4, 8, or 12. These salts are yellow to yellow/orange solids that are moderately soluble in water and dilute acids. Its neutral solutions slowly decompose, depositing the light yellow oxide CeO2. Solutions of ceric sulfate have a strong yellow color. The tetrahydrate loses water when heated to 180-200 °C.

<span class="mw-page-title-main">Cadmium sulfate</span> Chemical compound

Cadmium sulfate is the name of a series of related inorganic compounds with the formula CdSO4·xH2O. The most common form is the monohydrate CdSO4·H2O, but two other forms are known CdSO4·83H2O and the anhydrous salt (CdSO4). All salts are colourless and highly soluble in water.

<span class="mw-page-title-main">Stibine</span> Chemical compound

Stibine (IUPAC name: stibane) is a chemical compound with the formula SbH3. A pnictogen hydride, this colourless, highly toxic gas is the principal covalent hydride of antimony, and a heavy analogue of ammonia. The molecule is pyramidal with H–Sb–H angles of 91.7° and Sb–H distances of 170.7 pm (1.707 Å). This gas has an offensive smell like hydrogen sulfide (rotten eggs).

<span class="mw-page-title-main">Vanadium(V) oxide</span> Precursor to vanadium alloys and industrial catalyst

Vanadium(V) oxide (vanadia) is the inorganic compound with the formula V2O5. Commonly known as vanadium pentoxide, it is a brown/yellow solid, although when freshly precipitated from aqueous solution, its colour is deep orange. Because of its high oxidation state, it is both an amphoteric oxide and an oxidizing agent. From the industrial perspective, it is the most important compound of vanadium, being the principal precursor to alloys of vanadium and is a widely used industrial catalyst.

<span class="mw-page-title-main">Methyl methacrylate</span> Chemical compound

Methyl methacrylate (MMA) is an organic compound with the formula CH2=C(CH3)COOCH3. This colorless liquid, the methyl ester of methacrylic acid (MAA), is a monomer produced on a large scale for the production of poly(methyl methacrylate) (PMMA).

<span class="mw-page-title-main">Aluminium sulfate</span> Chemical compound

Aluminium sulfate is a salt with the formula Al2(SO4)3. It is soluble in water and is mainly used as a coagulating agent (promoting particle collision by neutralizing charge) in the purification of drinking water and wastewater treatment plants, and also in paper manufacturing.

<span class="mw-page-title-main">Tin(IV) oxide</span> Chemical compound known as stannic oxide, cassiterite and tin ore

Tin(IV) oxide, also known as stannic oxide, is the inorganic compound with the formula SnO2. The mineral form of SnO2 is called cassiterite, and this is the main ore of tin. With many other names, this oxide of tin is an important material in tin chemistry. It is a colourless, diamagnetic, amphoteric solid.

<span class="mw-page-title-main">Beryllium hydroxide</span> Chemical compound

Beryllium hydroxide, Be(OH)2, is an amphoteric hydroxide, dissolving in both acids and alkalis. Industrially, it is produced as a by-product in the extraction of beryllium metal from the ores beryl and bertrandite. The natural pure beryllium hydroxide is rare (in form of the mineral behoite, orthorhombic) or very rare (clinobehoite, monoclinic). When alkali is added to beryllium salt solutions the α-form (a gel) is formed. If this left to stand or boiled, the rhombic β-form precipitates. This has the same structure as zinc hydroxide, Zn(OH)2, with tetrahedral beryllium centers.

<span class="mw-page-title-main">Mercury(II) sulfate</span> Chemical compound

Mercury(II) sulfate, commonly called mercuric sulfate, is the chemical compound HgSO4. It is an odorless salt that forms white granules or crystalline powder. In water, it separates into an insoluble basic sulfate with a yellow color and sulfuric acid.

<span class="mw-page-title-main">Iron(III) sulfate</span> Chemical compound

Iron(III) sulfate (or ferric sulfate), is a family of inorganic compounds with the formula Fe2(SO4)3(H2O)n. A variety of hydrates are known, including the most commonly encountered form of "ferric sulfate". Solutions are used in dyeing as a mordant, and as a coagulant for industrial wastes. Solutions of ferric sulfate are also used in the processing of aluminum and steel.

<span class="mw-page-title-main">Chromium(III) sulfate</span> Chemical compound

Chromium(III) sulfate usually refers to the inorganic compounds with the formula Cr2(SO4)3.x(H2O), where x can range from 0 to 18. Additionally, ill-defined but commercially important "basic chromium sulfates" are known. These salts are usually either violet or green solids that are soluble in water. It is commonly used in tanning leather.

<span class="mw-page-title-main">Cobalt(II) sulfate</span> Inorganic compound

Cobalt(II) sulfate is any of the inorganic compounds with the formula CoSO4(H2O)x. Usually cobalt sulfate refers to the hexa- or heptahydrates CoSO4.6H2O or CoSO4.7H2O, respectively. The heptahydrate is a red solid that is soluble in water and methanol. Since cobalt(II) has an odd number of electrons, its salts are paramagnetic.

<span class="mw-page-title-main">Zirconium(IV) sulfate</span> Chemical compound

Zirconium(IV) sulfate is the name for a family of inorganic salts with the formula Zr(SO4)2(H2O)n where n = 0, 4, 5, 7. These species are related by the degree of hydration. They are white or colourless solids that are soluble in water.

Barium permanganate is a chemical compound, with the formula Ba(MnO4)2. It forms violet to brown crystals that are sparingly soluble in water.

References

  1. Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. p. 4.64. ISBN   0-8493-0486-5.
  2. 1 2 3 4 5 6 R. Mercier; J. Douglade; J. Bernard (1976). "Structure cristalline de Sb2O3.3SO3". Acta Crystallographica Section B (in French). 32 (10): 2787–2791. doi:10.1107/S0567740876008881.
  3. 1 2 NIOSH Pocket Guide to Chemical Hazards. "#0036". National Institute for Occupational Safety and Health (NIOSH).
  4. 1 2 3 4 Herbst, Karl Albert et al. (1985) Antimony and antimony compounds in Ullmann's Encyclopedia of Industrial Chemistry 5th ed., vol. A3, p. 70. ISBN   3-527-20103-3.
  5. Nicholas C. Norman (31 December 1997). Chemistry of arsenic, antimony, and bismuth. Springer. pp. 193–. ISBN   978-0-7514-0389-3.
  6. Method of forming phase change layer, method of manufacturing a storage node using the same, and method of manufacturing phase change memory device using the same – Samsung Electronics Co., Ltd. Freepatentsonline.com (2007-01-02). Retrieved on 2011-12-23.
  7. Antimony(III) Sulfate Material Safety Data Sheet Archived 2012-04-26 at the Wayback Machine . Prochemonline.
  8. "Klebelsbergite".
  9. 1 2 "List of Minerals". 21 March 2011.
  10. "Coquandite".