Nitrosylsulfuric acid

Last updated
Nitrosylsulfuric acid
Nitrosylsulfuric acid structure.svg
Nitrosylsulfuric acid molecule ball.png
Names
IUPAC name
Nitrosylsulfuric acid
Other names
nitrosonium bisulfate, chamber crystals
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.029.058 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/HNO5S/c2-1-6-7(3,4)5/h(H,3,4,5) Yes check.svgY
    Key: VQTGUFBGYOIUFS-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/HNO5S/c2-1-6-7(3,4)5/h(H,3,4,5)
    Key: VQTGUFBGYOIUFS-UHFFFAOYAM
  • O=NOS(=O)(=O)O
Properties
HSO4NO
Molar mass 127.08 g/mol
AppearancePale yellow crystals [1]
Density 1.865 g/mL in
40% sulfuric acid soln [2]
Melting point 70 °C (158 °F; 343 K) [1]
Boiling point Decomposes
Decomposes
Solubility Soluble in H2SO4 [1]
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Oxidizer
Related compounds
Other anions
NOCl
Other cations
NaHSO4
Related compounds
NOBF4
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Nitrosylsulfuric acid is the chemical compound with the formula HSO4NO. It is a colourless solid that is used industrially in the production of caprolactam, [3] and was formerly part of the lead chamber process for producing sulfuric acid. The compound is the mixed anhydride of sulfuric acid and nitrous acid.

Contents

In organic chemistry, it is used as a reagent for nitrosating, as a diazotizing agent, and as an oxidizing agent. [1]

Synthesis and reactions

A typical procedure entails dissolving sodium nitrite in cold sulfuric acid: [4] [5]

HNO2 + H2SO4 → HSO4NO + H2O

It can also be prepared by the reaction of nitric acid and sulfur dioxide. [6]

HSO4NO is used in organic chemistry to prepare diazonium salts from amines, for example in the Sandmeyer reaction. Related NO-delivery reagents include nitrosonium tetrafluoroborate [NO]+[BF4] and nitrosyl chloride.

In industry, the nitrosodecarboxylation reaction between nitrosylsulfuric acid and cyclohexanecarboxylic acid is used to generate caprolactam: [3]

Nitrosodecarboxylation Caprolactam Synthesis.svg

Safety

Nitrosylsulfuric acid is a hazardous material and precautions are indicated. [1]

Related Research Articles

<span class="mw-page-title-main">Beckmann rearrangement</span> Chemical rearrangement

The Beckmann rearrangement, named after the German chemist Ernst Otto Beckmann (1853–1923), is a rearrangement of an oxime functional group to substituted amides. The rearrangement has also been successfully performed on haloimines and nitrones. Cyclic oximes and haloimines yield lactams.

<span class="mw-page-title-main">Manganese dioxide</span> Chemical compound

Manganese dioxide is the inorganic compound with the formula MnO
2
. This blackish or brown solid occurs naturally as the mineral pyrolusite, which is the main ore of manganese and a component of manganese nodules. The principal use for MnO
2
is for dry-cell batteries, such as the alkaline battery and the zinc–carbon battery. MnO
2
is also used as a pigment and as a precursor to other manganese compounds, such as KMnO
4
. It is used as a reagent in organic synthesis, for example, for the oxidation of allylic alcohols. MnO
2
has an α-polymorph that can incorporate a variety of atoms in the "tunnels" or "channels" between the manganese oxide octahedra. There is considerable interest in α-MnO
2
as a possible cathode for lithium-ion batteries.

<span class="mw-page-title-main">Oxime</span> Organic compounds of the form >C=N–OH

In organic chemistry, an oxime is an organic compound belonging to the imines, with the general formula RR’C=N−OH, where R is an organic side-chain and R' may be hydrogen, forming an aldoxime, or another organic group, forming a ketoxime. O-substituted oximes form a closely related family of compounds. Amidoximes are oximes of amides with general structure R1C(=NOH)NR2R3.

Chromic acid is jargon for a solution formed by the addition of sulfuric acid to aqueous solutions of dichromate. It consists at least in part of chromium trioxide.

<span class="mw-page-title-main">Phthalic anhydride</span> Chemical compound

Phthalic anhydride is the organic compound with the formula C6H4(CO)2O. It is the anhydride of phthalic acid. Phthalic anhydride is a principal commercial form of phthalic acid. It was the first anhydride of a dicarboxylic acid to be used commercially. This white solid is an important industrial chemical, especially for the large-scale production of plasticizers for plastics. In 2000, the worldwide production volume was estimated to be about 3 million tonnes per year.

<span class="mw-page-title-main">Acyl halide</span> Oxoacid compound with an –OH group replaced by a halogen

In organic chemistry, an acyl halide is a chemical compound derived from an oxoacid by replacing a hydroxyl group with a halide group.

<span class="mw-page-title-main">Nitration</span> Chemical reaction which adds a nitro (–NO₂) group onto a molecule

In organic chemistry, nitration is a general class of chemical processes for the introduction of a nitro group into an organic compound. The term also is applied incorrectly to the different process of forming nitrate esters between alcohols and nitric acid. The difference between the resulting molecular structures of nitro compounds and nitrates is that the nitrogen atom in nitro compounds is directly bonded to a non-oxygen atom, whereas in nitrate esters, the nitrogen is bonded to an oxygen atom that in turn usually is bonded to a carbon atom.

<span class="mw-page-title-main">Sodium amalgam</span> Alloy of mercury and sodium

Sodium amalgam, commonly denoted Na(Hg), is an alloy of mercury and sodium. The term amalgam is used for alloys, intermetallic compounds, and solutions involving mercury as a major component. Sodium amalgams are often used in reactions as strong reducing agents with better handling properties compared to solid sodium. They are less dangerously reactive toward water and in fact are often used as an aqueous suspension.

Iron(II) chloride, also known as ferrous chloride, is the chemical compound of formula FeCl2. It is a paramagnetic solid with a high melting point. The compound is white, but typical samples are often off-white. FeCl2 crystallizes from water as the greenish tetrahydrate, which is the form that is most commonly encountered in commerce and the laboratory. There is also a dihydrate. The compound is highly soluble in water, giving pale green solutions.

<span class="mw-page-title-main">Oxalyl chloride</span> Chemical compound

Oxalyl chloride is an organic chemical compound with the formula Cl−C(=O)−C(=O)−Cl. This colorless, sharp-smelling liquid, the diacyl chloride of oxalic acid, is a useful reagent in organic synthesis.

<span class="mw-page-title-main">Thionyl chloride</span> Inorganic compound (SOCl2)

Thionyl chloride is an inorganic compound with the chemical formula SOCl2. It is a moderately volatile, colourless liquid with an unpleasant acrid odour. Thionyl chloride is primarily used as a chlorinating reagent, with approximately 45,000 tonnes per year being produced during the early 1990s, but is occasionally also used as a solvent. It is toxic, reacts with water, and is also listed under the Chemical Weapons Convention as it may be used for the production of chemical weapons.

<span class="mw-page-title-main">Phosphorus pentachloride</span> Chemical compound

Phosphorus pentachloride is the chemical compound with the formula PCl5. It is one of the most important phosphorus chlorides/oxychlorides, others being PCl3 and POCl3. PCl5 finds use as a chlorinating reagent. It is a colourless, water-sensitive solid, although commercial samples can be yellowish and contaminated with hydrogen chloride.

<span class="mw-page-title-main">Cyanuric chloride</span> Chemical compound

Cyanuric chloride is an organic compound with the formula (NCCl)3. This white solid is the chlorinated derivative of 1,3,5-triazine. It is the trimer of cyanogen chloride. Cyanuric chloride is the main precursor to the popular but controversial herbicide atrazine.

<span class="mw-page-title-main">Thiophenol</span> Chemical compound

Thiophenol is an organosulfur compound with the formula C6H5SH, sometimes abbreviated as PhSH. This foul-smelling colorless liquid is the simplest aromatic thiol. The chemical structures of thiophenol and its derivatives are analogous to phenols. An exception is the oxygen atom in the hydroxyl group (-OH) bonded to the aromatic ring is replaced by a sulfur atom. The prefix thio- implies a sulfur-containing compound and when used before a root word name for a compound which would normally contain an oxygen atom, in the case of 'thiol' that the alcohol oxygen atom is replaced by a sulfur atom.

The Blaise ketone synthesis is the chemical reaction of acid chlorides with organozinc compounds to give ketones.

<span class="mw-page-title-main">Ethyl diazoacetate</span> Chemical compound

Ethyl diazoacetate (N=N=CHC(O)OC2H5) is a diazo compound and a reagent in organic chemistry. It was discovered by Theodor Curtius in 1883. The compound can be prepared by reaction of the ethyl ester of glycine with sodium nitrite and sodium acetate in water.

In inorganic chemistry, sulfonyl halide groups occur when a sulfonyl functional group is singly bonded to a halogen atom. They have the general formula RSO2X, where X is a halogen. The stability of sulfonyl halides decreases in the order fluorides > chlorides > bromides > iodides, all four types being well known. The sulfonyl chlorides and fluorides are of dominant importance in this series.

<span class="mw-page-title-main">Nitrosyl chloride</span> Chemical compound

Nitrosyl chloride is the chemical compound with the formula NOCl. It is a yellow gas that is commonly encountered as a component of aqua regia, a mixture of 3 parts concentrated hydrochloric acid and 1 part of concentrated nitric acid. It is a strong electrophile and oxidizing agent. It is sometimes called Tilden's reagent, after William A. Tilden, who was the first to produce it as a pure compound.

The reduction of nitro compounds are chemical reactions of wide interest in organic chemistry. The conversion can be effected by many reagents. The nitro group was one of the first functional groups to be reduced. Alkyl and aryl nitro compounds behave differently. Most useful is the reduction of aryl nitro compounds.

An insertion reaction is a chemical reaction where one chemical entity interposes itself into an existing bond of typically a second chemical entity e.g.:

References

  1. 1 2 3 4 5 George A. Olah, G. K. Surya Prakash, Qi Wang, Xing-Ya Li (2001). "Nitrosylsulfuric Acid". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rn060. ISBN   978-0471936237.{{cite book}}: |journal= ignored (help)CS1 maint: multiple names: authors list (link)
  2. "Nitrosylsulfuric acid solution". Merck.
  3. 1 2 Ritz, J.; Fuchs, H.; Kieczka, H.; Moran, W. C. (2002). "Caprolactam". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a05_031. ISBN   978-3527306732.
  4. Hodgson, H. H.; Mahadevan, A. P.; Ward, E. R. (1955). "1,4-Dinitronaphthalene". Organic Syntheses ; Collected Volumes, vol. 3, p. 341. (diazodization followed by treatment with nitrite)
  5. Sandin, R. B.; Cairns, T. L. (1943). "1,2,3-Triiodo-5-nitrobenzene". Organic Syntheses ; Collected Volumes, vol. 2, p. 604. (diazodization followed by treatment with iodide)
  6. Coleman, G. H.; Lillis, G. A.; Goheen, G. E. (1939). Nitrosyl Chloride. Inorganic Syntheses. Vol. 1. pp. 55–59. doi:10.1002/9780470132326.ch20. ISBN   9780470132326. This procedure generates the nitrosylsulfuric acid as an intermediate en route to NOCl.