The lead chamber process was an industrial method used to produce sulfuric acid in large quantities. It has been largely supplanted by the contact process.
In 1746 in Birmingham, England, John Roebuck began producing sulfuric acid in lead-lined chambers, which were stronger and less expensive and could be made much larger than the glass containers that had been used previously. This allowed the effective industrialization of sulfuric acid production, and with several refinements, this process remained the standard method of production for almost two centuries. The process was so robust that as late as 1946, the chamber process still accounted for 25% of sulfuric acid manufactured. [1]
Sulfur dioxide is introduced with steam and nitrogen dioxide into large chambers lined with sheet lead where the gases are sprayed down with water and chamber acid (62–70% sulfuric acid). The sulfur dioxide and nitrogen dioxide dissolve, and over a period of approximately 30 minutes the sulfur dioxide is oxidized to sulfuric acid. The presence of nitrogen dioxide is necessary for the reaction to proceed at a reasonable rate. The process is highly exothermic, and a major consideration of the design of the chambers was to provide a way to dissipate the heat formed in the reactions.
Early plants used very large lead-lined wooden rectangular chambers (Faulding box chambers[ citation needed ]) that were cooled by ambient air. The internal lead sheathing served to contain the corrosive sulfuric acid and to render the wooden chambers waterproof.
In the 1820s-1830s, French chemist Joseph Louis Gay-Lussac (simultaneously and likely in collaboration with William Gossage) realized that it is not the bulk of liquid determining the speed of reaction but the internal area of the chamber, so he redesigned the chambers as stoneware packed masonry cylinders, which was an early example of the packed bed.
In the 20th century, plants using Mills-Packard chambers supplanted the earlier designs. These chambers were tall tapered cylinders that were externally cooled by water flowing down the outside surface of the chamber.
Sulfur dioxide for the process was provided by burning elemental sulfur or by the roasting of sulfur-containing metal ores in a stream of air in a furnace. During the early period of manufacture, nitrogen oxides were produced by the decomposition of niter at high temperature in the presence of acid, but this process was gradually supplanted by the air oxidation of ammonia to nitric oxide in the presence of a catalyst. The recovery and reuse of oxides of nitrogen was an important economic consideration in the operation of a chamber process plant.
In the reaction chambers, nitric oxide reacts with oxygen to produce nitrogen dioxide. Liquid from the bottom of the chambers is diluted and pumped to the top of the chamber, and sprayed downward in a fine mist. Sulfur dioxide and nitrogen dioxide are absorbed in the liquid, and react to form sulfuric acid and nitric oxide. The liberated nitric oxide is sparingly soluble in water, and returns to the gas in the chamber where it reacts with oxygen in the air to reform nitrogen dioxide. Some percentage of the nitrogen oxides is sequestered in the reaction liquor as nitrosylsulfuric acid and as nitric acid, so fresh nitric oxide must be added as the process proceeds. Later versions of chamber plants included a high-temperature Glover tower to recover the nitrogen oxides from the chamber liquor, while concentrating the chamber acid to as much as 78% H2SO4. Exhaust gases from the chambers are scrubbed by passing them into a tower, through which some of the Glover acid flows over broken tile. Nitrogen oxides are absorbed to form nitrosylsulfuric acid, which is then returned to the Glover tower to reclaim the oxides of nitrogen.
Sulfuric acid produced in the reaction chambers is limited to about 35% concentration. At higher concentrations, nitrosylsulfuric acid precipitates upon the lead walls in the form of 'chamber crystals', and is no longer able to catalyze the oxidation reactions. [2]
Sulfur dioxide is generated by burning elemental sulfur or by roasting pyritic ore in a current of air:
Nitrogen oxides are produced by decomposition of niter in the presence of sulfuric acid, or by hydrolysis of nitrosylsulfuric acid:
In the reaction chambers, sulfur dioxide and nitrogen dioxide dissolve in the reaction liquor. Nitrogen dioxide is hydrated to produce nitrous acid, which then oxidizes the sulfur dioxide to sulfuric acid and nitric oxide. The reactions are not well characterized, but it is known that nitrosylsulfuric acid is an intermediate in at least one pathway. The major overall reactions are:
Nitric oxide escapes from the reaction liquor and is subsequently reoxidized by molecular oxygen to nitrogen dioxide. This is the overall rate determining step in the process: [3]
Nitrogen oxides are absorbed and regenerated in the process, and thus serve as a catalyst for the overall reaction:
Nitrogen is a chemical element; it has symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh in total abundance in the Milky Way and the Solar System. At standard temperature and pressure, two atoms of the element bond to form N2, a colorless and odorless diatomic gas. N2 forms about 78% of Earth's atmosphere, making it the most abundant chemical species in air. Because of the volatility of nitrogen compounds, nitrogen is relatively rare in the solid parts of the Earth.
Nitric acid is an inorganic compound with the formula HNO3. It is a highly corrosive mineral acid. The compound is colorless, but samples tend to acquire a yellow cast over time due to decomposition into oxides of nitrogen. Most commercially available nitric acid has a concentration of 68% in water. When the solution contains more than 86% HNO3, it is referred to as fuming nitric acid. Depending on the amount of nitrogen dioxide present, fuming nitric acid is further characterized as red fuming nitric acid at concentrations above 86%, or white fuming nitric acid at concentrations above 95%.
An oxide is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– ion with oxygen in the oxidation state of −2. Most of the Earth's crust consists of oxides. Even materials considered pure elements often develop an oxide coating. For example, aluminium foil develops a thin skin of Al2O3 that protects the foil from further oxidation.
The Ostwald process is a chemical process used for making nitric acid (HNO3). The Ostwald process is a mainstay of the modern chemical industry, and it provides the main raw material for the most common type of fertilizer production. Historically and practically, the Ostwald process is closely associated with the Haber process, which provides the requisite raw material, ammonia (NH3). This method is preferred over other methods of nitric acid production, in that it is less expensive and more efficient.
Sulfuric acid or sulphuric acid, known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen, and hydrogen, with the molecular formula H2SO4. It is a colorless, odorless, and viscous liquid that is miscible with water.
Aqua regia is a mixture of nitric acid and hydrochloric acid, optimally in a molar ratio of 1:3. Aqua regia is a fuming liquid. Freshly prepared aqua regia is colorless, but it turns yellow, orange or red within seconds from the formation of nitrosyl chloride and nitrogen dioxide. It was so named by alchemists because it can dissolve noble metals like gold and platinum, though not all metals.
Dinitrogen tetroxide, commonly referred to as nitrogen tetroxide (NTO), and occasionally (usually among ex-USSR/Russian rocket engineers) as amyl, is the chemical compound N2O4. It is a useful reagent in chemical synthesis. It forms an equilibrium mixture with nitrogen dioxide. Its molar mass is 92.011 g/mol.
Nitric oxide is a colorless gas with the formula NO. It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes denoted by a dot in its chemical formula. Nitric oxide is also a heteronuclear diatomic molecule, a class of molecules whose study spawned early modern theories of chemical bonding.
Nitrogen dioxide is a chemical compound with the formula NO2. One of several nitrogen oxides, nitrogen dioxide is a reddish-brown gas. It is a paramagnetic, bent molecule with C2v point group symmetry. Industrially, NO2 is an intermediate in the synthesis of nitric acid, millions of tons of which are produced each year, primarily for the production of fertilizers.
Nitrogen oxide may refer to a binary compound of oxygen and nitrogen, or a mixture of such compounds:
Nitrous acid is a weak and monoprotic acid known only in solution, in the gas phase, and in the form of nitrite salts. It was discovered by Carl Wilhelm Scheele, who called it "phlogisticated acid of niter". Nitrous acid is used to make diazonium salts from amines. The resulting diazonium salts are reagents in azo coupling reactions to give azo dyes.
Dinitrogen pentoxide is the chemical compound with the formula N2O5. It is one of the binary nitrogen oxides, a family of compounds that only contain nitrogen and oxygen. It exists as colourless crystals that sublime slightly above room temperature, yielding a colorless gas.
An acidic oxide is an oxide that either produces an acidic solution upon addition to water, or acts as an acceptor of hydroxide ions effectively functioning as a Lewis acid. Acidic oxides will typically have a low pKa and may be inorganic or organic. A commonly encountered acidic oxide, carbon dioxide produces an acidic solution when dissolved.
The contact process is the current method of producing sulfuric acid in the high concentrations needed for industrial processes. Platinum was originally used as the catalyst for this reaction; however, as it is susceptible to reacting with arsenic impurities in the sulfur feedstock, vanadium(V) oxide (V2O5) is now preferred.
In chemistry, disproportionation, sometimes called dismutation, is a redox reaction in which one compound of intermediate oxidation state converts to two compounds, one of higher and one of lower oxidation state. The reverse of disproportionation, such as when a compound in an intermediate oxidation state is formed from precursors of lower and higher oxidation states, is called comproportionation, also known as symproportionation.
Sulfamic acid, also known as amidosulfonic acid, amidosulfuric acid, aminosulfonic acid, sulphamic acid and sulfamidic acid, is a molecular compound with the formula H3NSO3. This colourless, water-soluble compound finds many applications. Sulfamic acid melts at 205 °C before decomposing at higher temperatures to water, sulfur trioxide, sulfur dioxide and nitrogen.
Lead(IV) oxide, commonly known as lead dioxide, is an inorganic compound with the chemical formula PbO2. It is an oxide where lead is in an oxidation state of +4. It is a dark-brown solid which is insoluble in water. It exists in two crystalline forms. It has several important applications in electrochemistry, in particular as the positive plate of lead acid batteries.
In atmospheric chemistry, NOx is shorthand for nitric oxide and nitrogen dioxide, the nitrogen oxides that are most relevant for air pollution. These gases contribute to the formation of smog and acid rain, as well as affecting tropospheric ozone.
The chemical element nitrogen is one of the most abundant elements in the universe and can form many compounds. It can take several oxidation states; but the most common oxidation states are -3 and +3. Nitrogen can form nitride and nitrate ions. It also forms a part of nitric acid and nitrate salts. Nitrogen compounds also have an important role in organic chemistry, as nitrogen is part of proteins, amino acids and adenosine triphosphate.
The Birkeland–Eyde process was one of the competing industrial processes in the beginning of nitrogen-based fertilizer production. It is a multi-step nitrogen fixation reaction that uses electrical arcs to react atmospheric nitrogen (N2) with oxygen (O2), ultimately producing nitric acid (HNO3) with water. The resultant nitric acid was then used as a source of nitrate (NO3−) in the reaction which may take place in the presence of water or another proton acceptor.