Hydrogen disulfide

Last updated
Hydrogen disulfide
Hydrogen disulfide bonds.png
H2S2-CM-3D-balls.png
  Sulfur, S
  Hydrogen, H
Names
IUPAC name
Dihydrogen disulfide
Systematic IUPAC name
Disulfane
Other names
  • Dithioperoxol
  • Hydrogen disulphide
  • Hydrogen persulfide
  • Hydrogen persulphide
  • Thiosulfenic acid
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
PubChem CID
  • InChI=1S/H2S2/c1-2/h1-2H Yes check.svgY
    Key: BWGNESOTFCXPMA-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/H2S2/c1-2/h1-2H
    Key: BWGNESOTFCXPMA-UHFFFAOYAV
  • SS
Properties
H2S2
Molar mass 66.14 g·mol−1
AppearancePale yellow liquid
Density 1.334 g/cm3
Melting point −89.6 °C (−129.3 °F; 183.6 K)
Boiling point 70.7 °C (159.3 °F; 343.8 K)
Hazards
Flash point flammable
Related compounds
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Hydrogen disulfide is the inorganic compound with the formula H2S2. This hydrogen chalcogenide is a pale yellow volatile liquid with a camphor-like odor. It decomposes readily to hydrogen sulfide (H2S) and elemental sulfur. [1]

Contents

Structure

The connection of atoms in the hydrogen disulfide molecule is H−S−S−H. The structure of hydrogen disulfide is similar to that of hydrogen peroxide, with C2 point group symmetry. Both molecules are distinctly nonplanar. The dihedral angle between the Ha−S−S and S−S−Hb planes is 90.6°, compared with 111.5° in H2O2. The H−S−S bond angle is 92°, close to 90° for unhybridized divalent sulfur. [1]

Synthesis

Hydrogen disulfide can be synthesised by cracking polysulfanes (H2Sn) according to this idealized equation:

H2Sn → H2S2 + Sn−2

The main impurity is trisulfane (H2S3). [1] The precursor polysulfane is produced by the reaction of hydrochloric acid with aqueous sodium polysulfide. The polysulfane precipitates as an oil. [1] [2]

Reactions

Upon contact with water or alcohols, hydrogen disulfide readily decomposes under ambient conditions to hydrogen sulfide and sulfur.

It is more acidic than hydrogen sulfide, but the pKa has not been reported. [1]

In organosulfur chemistry, hydrogen disulfide adds to alkenes to give disulfides and thiols. [3]

Quantum tunneling and its suppression in deuterium disulfide

The deuterated form of hydrogen disulfide, deuterium disulfide D−S−S−D (dideuterodisulfane), has a similar geometry to H−S−S−H, but its tunneling time is slower, making it a convenient test case for the quantum Zeno effect, in which frequent observation of a quantum system suppresses its normal evolution. Trost and Hornberger [4] have calculated that while an isolated D−S−S−D molecule would spontaneously oscillate between left and right chiral forms with a period of 5.6 milliseconds, the presence of a small amount of inert helium gas should stabilize the chiral states, the collisions of the helium atoms in effect "observing" the molecule's momentary chirality and so suppressing spontaneous evolution to the other chiral state. [5]

Health effects

In high concentrations, it can cause dizziness, disorientation and ultimately unconsciousness. [6]

Historic literature

Related Research Articles

<span class="mw-page-title-main">Sulfur</span> Chemical element, symbol S and atomic number 16

Sulfur (also spelled sulphur in British English) is a chemical element; it has symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with the chemical formula S8. Elemental sulfur is a bright yellow, crystalline solid at room temperature.

In biochemistry, a disulfide refers to a functional group with the structure R−S−S−R′. The linkage is also called an SS-bond or sometimes a disulfide bridge and is usually derived by the coupling of two thiol groups. In biology, disulfide bridges formed between thiol groups in two cysteine residues are an important component of the secondary and tertiary structure of proteins. Persulfide usually refers to R−S−S−H compounds.

Sulfide (British English also sulphide) is an inorganic anion of sulfur with the chemical formula S2− or a compound containing one or more S2− ions. Solutions of sulfide salts are corrosive. Sulfide also refers to large families of inorganic and organic compounds, e.g. lead sulfide and dimethyl sulfide. Hydrogen sulfide (H2S) and bisulfide (SH) are the conjugate acids of sulfide.

<span class="mw-page-title-main">Catenation</span> Bonding of atoms of the same element into chains or rings

In chemistry, catenation is the bonding of atoms of the same element into a series, called a chain. A chain or a ring shape may be open if its ends are not bonded to each other, or closed if they are bonded in a ring. The words to catenate and catenation reflect the Latin root catena, "chain".

<span class="mw-page-title-main">Tetrasulfur tetranitride</span> Chemical compound

Tetrasulfur tetranitride is an inorganic compound with the formula S4N4. This gold-poppy coloured solid is the most important binary sulfur nitride, which are compounds that contain only the elements sulfur and nitrogen. It is a precursor to many S-N compounds and has attracted wide interest for its unusual structure and bonding.

<span class="mw-page-title-main">Lithium sulfide</span> Chemical compound

Lithium sulfide is the inorganic compound with the formula Li2S. It crystallizes in the antifluorite motif, described as the salt (Li+)2S2−. It forms a solid yellow-white deliquescent powder. In air, it easily hydrolyses to release hydrogen sulfide (rotten egg odor).

Sulfur compounds are chemical compounds formed the element sulfur (S). Common oxidation states of sulfur range from −2 to +6. Sulfur forms stable compounds with all elements except the noble gases.

<span class="mw-page-title-main">Copper monosulfide</span> Chemical compound

Copper monosulfide is a chemical compound of copper and sulfur. It was initially thought to occur in nature as the dark indigo blue mineral covellite. However, it was later shown to be rather a cuprous compound, formula Cu+3S(S2). CuS is a moderate conductor of electricity. A black colloidal precipitate of CuS is formed when hydrogen sulfide, H2S, is bubbled through solutions of Cu(II) salts. It is one of a number of binary compounds of copper and sulfur (see copper sulfide for an overview of this subject), and has attracted interest because of its potential uses in catalysis and photovoltaics.

A polysulfane is a chemical compound of formula H2Sn, where n > 1. Compounds containing 2 – 8 sulfur atoms have been isolated, longer chain compounds have been detected, but only in solution. H2S2 is colourless, higher members are yellow with the colour increasing with the sulfur content. In the chemical literature the term polysulfanes is sometimes used for compounds containing −(S)n, e.g. organic polysulfanes R1−(S)n−R2.

Thiosulfuric acid is the inorganic compound with the formula H2S2O3. It has attracted academic interest as a simple, easily accessed compound that is labile. It has few practical uses.

<span class="mw-page-title-main">Allotropes of sulfur</span> Class of substances

The element sulfur exists as many allotropes. In number of allotropes, sulfur is second only to carbon. In addition to the allotropes, each allotrope often exists in polymorphs delineated by Greek prefixes.

<span class="mw-page-title-main">Trisulfane</span> Chemical compound

Trisulfane is the inorganic compound with the formula H2S3. It is a pale yellow volatile liquid with a camphor-like odor. It decomposes readily to hydrogen sulfide and elemental sulfur. It is produced by distillation of the polysulfane oil obtained by acidification of polysulfide salts.

Sulfanyl (HS), also known as the mercapto radical, hydrosulfide radical, or hydridosulfur, is a simple radical molecule consisting of one hydrogen and one sulfur atom. The radical appears in metabolism in organisms as H2S is detoxified. Sulfanyl is one of the top three sulfur-containing gasses in gas giants such as Jupiter and is very likely to be found in brown dwarfs and cool stars. It was originally discovered by Margaret N. Lewis and John U. White at the University of California in 1939. They observed molecular absorption bands around 325 nm belonging to the system designated by 2Σ+2Πi. They generated the radical by means of a radio frequency discharge in hydrogen sulfide. HS is formed during the degradation of hydrogen sulfide in the atmosphere of the Earth. This may be a deliberate action to destroy odours or a natural phenomenon.

<span class="mw-page-title-main">Disulfur dioxide</span> Chemical compound

Disulfur dioxide, dimeric sulfur monoxide or SO dimer is an oxide of sulfur with the formula S2O2. The solid is unstable with a lifetime of a few seconds at room temperature.

<span class="mw-page-title-main">Thiophosphoryl fluoride</span> Chemical compound

Thiophosphoryl fluoride is an inorganic molecular gas with formula PSF3 containing phosphorus, sulfur and fluorine. It spontaneously ignites in air and burns with a cool flame. The discoverers were able to have flames around their hands without discomfort, and called it "probably one of the coldest flames known". The gas was discovered in 1888.

<span class="mw-page-title-main">Thiosulfurous acid</span> Chemical compound

Thiosulfurous acid is a hypothetical chemical compound with the formula HS−S(=O)−OH or HO−S(=S)−OH. Attempted synthesis leads to polymers. It is a low oxidation state (+1) sulfur acid. It is the Arrhenius acid for disulfur monoxide. Salts derived from thiosulfurous acid, which are also unknown, are named "thiosulfites" or "sulfurothioites". The ion is S=SO2−
2
.

Hydrogen thioperoxide, also called oxadisulfane or sulfanol, is the chemical with the structure H–S–O–H. It can be considered as the simple sulfur-substituted analog of the common hydrogen peroxide (H–O–O–H) chemical, and as the simplest hydrogen chalcogenide containing more than one type of chalcogen. The chemical has been described as the "missing link" between hydrogen peroxide and hydrogen disulfide (H–S–S–H), though it is substantially less stable than either of the other two. It is the inorganic parent structure of the sulfenic acid class of organic compounds (R–S–O–H) and also the oxadisulfide linkage (R1–S–O–R2), where "R" is any organic structure. Sulfur is present in oxidation state 0.

Hydrogen chalcogenides are binary compounds of hydrogen with chalcogen atoms. Water, the first chemical compound in this series, contains one oxygen atom and two hydrogen atoms, and is the most common compound on the Earth's surface.

Tungsten trisulfide is an inorganic compound of tungsten and sulfur with the chemical formula WS3. The compound looks like chocolate-brown powder.

<span class="mw-page-title-main">Selenosulfide</span>

In chemistry, a selenosulfide refers to distinct classes of inorganic and organic compounds containing sulfur and selenium. The organic derivatives contain Se-S bonds, whereas the inorganic derivatives are more variable.

References

  1. 1 2 3 4 5 R. Steudel "Inorganic Polysulfanes H2Sn with n > 1" in Elemental Sulfur and Sulfur-Rich Compounds II (Topics in Current Chemistry) 2003, Volume 231, pp 99–125. doi : 10.1007/b13182
  2. De, A. K. (2001-01-15). A Text Book of Inorganic Chemistry. ISBN   978-81-224-1384-7.
  3. Hazardous Reagents, Robinson Brothers
  4. Trost, J.; Hornberger, K. (2009). "Hund's Paradox and the Collisional Stabilization of Chiral Molecules". Phys. Rev. Lett. 103 (2): 023202. arXiv: 0811.2140 . Bibcode:2009PhRvL.103b3202T. doi:10.1103/PhysRevLett.103.023202. PMID   19659202.
  5. Month-long calculation solves 82-year-old quantum paradox, Physics Today, September 2009, p. 16
  6. Stein, Wilkinson, G (2007). Seminars in general adult psychiatry. Royal College of Psychiatrists. ISBN   978-1-904671-44-2.