Digermane

Last updated
Digermane
Digermane molecule.png
Digermane-3D-vdW.png
Names
IUPAC name
Digermane
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.159.079 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
  • InChI=1S/Ge2H6/c1-2/h1-2H3
    Key: MOFQWXUCFOZALF-UHFFFAOYSA-N
  • InChI=1/Ge2H6/c1-2/h1-2H3
    Key: MOFQWXUCFOZALF-UHFFFAOYAF
  • [GeH3][GeH3]
Properties
Ge2H6
Molar mass 151.328 g/mol
AppearanceColorless gas
Density 1.98 kg/m3 [1]
Melting point −109 °C (−164 °F; 164 K)
Boiling point 29 °C (84 °F; 302 K)
Insoluble
Hazards
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-skull.svg GHS-pictogram-exclam.svg
Danger
H220, H302, H312, H315, H319, H330, H335
P210, P260, P261, P264, P270, P271, P280, P284, P301+P312, P302+P352, P304+P340, P305+P351+P338, P310, P312, P320, P321, P322, P330, P332+P313, P337+P313, P362, P363, P377, P381, P403, P403+P233, P405, P501
Related compounds
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Digermane is an inorganic compound with the chemical formula Ge2H6. One of the few hydrides of germanium, it is a colourless liquid. Its molecular geometry is similar to ethane. [2]

Contents

Synthesis

Digermane was first synthesized and examined in 1924 by Dennis, Corey, and Moore. Their method involves the hydrolysis of magnesium germanide using hydrochloric acid. [3] Many of the properties of digermane and trigermane GeH3GeH2GeH3 were determined in the following decade using electron diffraction studies. [4] Further considerations of the compound involved examinations of various reactions such as pyrolysis and oxidation.

Digermane is produced together with germane by the reduction of germanium dioxide with sodium borohydride. Although the major product is germane, a quantifiable amount of digermane is produced in addition to traces of trigermane. [5] It also arises by the hydrolysis of magnesium-germanium alloys. [6]

Reactions

The reactions of digermane exhibit some differences between analogous compounds of the Group 14 elements carbon and silicon. However, there are still some similarities seen, especially in regards to pyrolysis reactions.

The oxidation of digermane takes place at lower temperatures than monogermane. The product of the reaction, germanium oxide, has been shown to act in turn as a catalyst of the reaction. This exemplifies a fundamental difference between germanium and the other Group 14 elements carbon and silicon (carbon dioxide and silicon dioxide do not exhibit the same catalytic properties). [7]

2 Ge2H6 + 7 O2 → 4 GeO2 + 6 H2O

In liquid ammonia, digermane undergoes disproportionation. Ammonia acts as a weakly basic catalyst. Products of the reaction are hydrogen, germane, and a solid polymeric germanium hydride. [8]

Pyrolysis of digermane is proposed to follow multiple steps:

Ge2H6 → 2 GeH3
GeH3 + Ge2H6 → GeH4 + Ge2H5
Ge2H5 → GeH2 + GeH3
GeH2 → Ge + H2
2 GeH2 → GeH4 + Ge
n GeH2 → (GeH2)n

This pyrolysis has been found to be more endothermic than the pyrolysis of disilane. This difference is attributed to the greater strength of the Ge-H bond vs the Si-H bond. As seen in the last reaction of the mechanism above, pyrolysis of digermane may induce polymerization of the GeH2 group, where GeH3 acts as a chain propagator and molecular hydrogen gas is released. [9] The dehydrogenation of digermane on gold leads to the formation of germanium nanowires. [10]

Digermane is a precursor to GeH3−GH2−E−CF3, where E is either sulfur or selenium. These trifluoromethylthio (−S−CF3) and trifluoromethylseleno (−Se−CF3) derivatives possess a markedly higher thermal stability than digermane itself. [11]

Applications

Digermane has a limited number of applications; germane itself is the preferred volatile germanium hydride. Generally, digermane is primarily used a precursor to germanium for use in various applications. Digermane can be used to deposit Ge-containing semiconductors via chemical vapor deposition. [12]

Related Research Articles

<span class="mw-page-title-main">Germanium</span> Chemical element, symbol Ge and atomic number 32

Germanium is a chemical element with the symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid in the carbon group that is chemically similar to its group neighbors silicon and tin. Like silicon, germanium naturally reacts and forms complexes with oxygen in nature.

<span class="mw-page-title-main">Hydrazine</span> Colorless flammable liquid with an ammonia-like odor

Hydrazine is an inorganic compound with the chemical formula N2H4. It is a simple pnictogen hydride, and is a colourless flammable liquid with an ammonia-like odour. Hydrazine is highly toxic unless handled in solution as, for example, hydrazine hydrate.

<span class="mw-page-title-main">Diborane</span> Chemical compound

Diborane(6), commonly known as diborane, is the chemical compound with the formula B2H6. It is a toxic, colorless, and pyrophoric gas with a repulsively sweet odor. Diborane is a key boron compound with a variety of applications. It has attracted wide attention for its electronic structure. Several of its derivatives are useful reagents.

Tungsten(VI) fluoride, also known as tungsten hexafluoride, is an inorganic compound with the formula WF6. It is a toxic, corrosive, colorless gas, with a density of about 13 kg/m3 (22 lb/cu yd) (roughly 11 times heavier than air). It is one of the densest known gases under standard conditions. WF6 ls commonly used by the semiconductor industry to form tungsten films, through the process of chemical vapor deposition. This layer is used in a low-resistivity metallic "interconnect". It is one of seventeen known binary hexafluorides.

<span class="mw-page-title-main">Germane</span> Chemical compound

Germane is the chemical compound with the formula GeH4, and the germanium analogue of methane. It is the simplest germanium hydride and one of the most useful compounds of germanium. Like the related compounds silane and methane, germane is tetrahedral. It burns in air to produce GeO2 and water. Germane is a group 14 hydride.

<span class="mw-page-title-main">Ammonia borane</span> Chemical compound

Ammonia borane (also systematically named amminetrihydridoboron), also called borazane, is the chemical compound with the formula H3NBH3. The colourless or white solid is the simplest molecular boron-nitrogen-hydride compound. It has attracted attention as a source of hydrogen fuel, but is otherwise primarily of academic interest.

<span class="mw-page-title-main">Organogermanium chemistry</span>

Organogermanium chemistry is the chemical science of organogermanium compounds, which are organometallic compounds containing a carbon to germanium chemical bond. Germanium shares group 14 in the periodic table with silicon, tin and lead, and not surprisingly the chemistry of organogermanium is in between that of organosilicon compounds and organotin compounds.

Oppenauer oxidation, named after Rupert Viktor Oppenauer, is a gentle method for selectively oxidizing secondary alcohols to ketones.

In chemistry, a Zintl phase is a product of a reaction between a group 1 or group 2 and main group metal or metalloid. It is characterized by intermediate metallic/ionic bonding. Zintl phases are a subgroup of brittle, high-melting intermetallic compounds that are diamagnetic or exhibit temperature-independent paramagnetism and are poor conductors or semiconductors.

<span class="mw-page-title-main">Plumbane</span> Chemical compound

Plumbane, PbH4, is a metal hydride and group 14 hydride composed of lead and hydrogen. Plumbane is not well characterized or well known, and it is thermodynamically unstable with respect to the loss of a hydrogen atom. Derivatives of plumbane include lead tetrafluoride, PbF4, and tetraethyllead, (CH3CH2)4Pb.

In organometallic chemistry, a migratory insertion is a type of reaction wherein two ligands on a metal complex combine. It is a subset of reactions that very closely resembles the insertion reactions, and both are differentiated by the mechanism that leads to the resulting stereochemistry of the products. However, often the two are used interchangeably because the mechanism is sometimes unknown. Therefore, migratory insertion reactions or insertion reactions, for short, are defined not by the mechanism but by the overall regiochemistry wherein one chemical entity interposes itself into an existing bond of typically a second chemical entity e.g.:

<span class="mw-page-title-main">Silicon tetrabromide</span> Chemical compound

Silicon tetrabromide, also known as tetrabromosilane, is the inorganic compound with the formula SiBr4. This colorless liquid has a suffocating odor due to its tendency to hydrolyze with release of hydrogen bromide. The general properties of silicon tetrabromide closely resemble those of the more commonly used silicon tetrachloride.

<span class="mw-page-title-main">Germylene</span> Class of germanium (II) compounds

Germylenes are a class of germanium(II) compounds with the general formula :GeR2. They are heavier carbene analogs. However, unlike carbenes, whose ground state can be either singlet or triplet depending on the substituents, germylenes have exclusively a singlet ground state. Unprotected carbene analogs, including germylenes, has a dimerization nature. Free germylenes can be isolated under the stabilization of steric hindrance or electron donation. The synthesis of first stable free dialkyl germylene was reported by Jutzi, et al in 1991.

<span class="mw-page-title-main">Vanadium pentafluoride</span> Chemical compound

Vanadium(V) fluoride is the inorganic compound with the chemical formula VF5. It is a colorless volatile liquid. It is a highly reactive compound, as indicated by its ability to fluorinate organic substances.

Germanium(II) hydroxide, normally written as Ge(OH)2, is a poorly characterised compound, sometimes called hydrous germanium(II) oxide or germanous hydroxide. It was first reported by Winkler in 1886.

An oxyhydride is a mixed anion compound containing both oxide O2− and hydride ions H. These compounds may be unexpected as the hydrogen and oxygen could be expected to react to form water. But if the metals making up the cations are electropositive enough, and the conditions are reducing enough, solid materials can be made that combine hydrogen and oxygen in the negative ion role.

The inorganic imides are compounds containing an ion composed of nitrogen bonded to hydrogen with formula HN2−. Organic imides have the NH group, and two single or one double covalent bond to other atoms. The imides are related to the inorganic amides (H2N), the nitrides (N3−) and the nitridohydrides (N3−•H).

Germyl, trihydridogermanate(1-), trihydrogermanide, trihydridogermyl or according to IUPAC Red Book: germanide is an anion containing germanium bounded with three hydrogens, with formula GeH−3. Germyl is the IUPAC term for the –GeH3 group. For less electropositive elements the bond can be considered covalent rather than ionic as "germanide" indicates. Germanide is the base for germane when it loses a proton.

<span class="mw-page-title-main">Chlorine-free germanium processing</span>

Chlorine-free germanium processing are methods of germanium activation to form useful germanium precursors in a more energy efficient and environmentally friendly way compared to traditional synthetic routes. Germanium tetrachloride is a valuable intermediate for the synthesis of many germanium complexes. Normal synthesis of it involves an energy-intensive dehydration of germanium oxide, , with hydrogen chloride, Due to the environmental and safety impact of non-recyclable, high energy reactions with , an alternative synthesis of a shelf-stable germanium intermediate precursor without chlorine is of interest. In 2017, a synthesis of organogermanes, without using chloride species was reported, allowing for a much more environmentally friendly and low energy synthesis using , , and even selectively activating germanium in the presence of zinc oxide, resulting in products that are bench stable and solid.

<span class="mw-page-title-main">Silylgermane</span> Chemical compound

Silylgermane is an inorganic compound with the chemical formula H3Si−GeH3. It is a colorless gas. It is very flammable, very toxic and corrosive.

References

  1. Haynes, William M., ed. (2016). CRC Handbook of Chemistry and Physics (97th ed.). Boca Raton, FL: CRC Press. pp. 4–61. ISBN   9781498754293.
  2. Pauling, Linus; Laubengayer, A. W.; Hoard, J. L. (1938). "The Electron Diffraction Study of Digermane and Trigermane". Journal of the American Chemical Society. 60 (7): 1605–1607. doi:10.1021/ja01274a024.
  3. Dennis, L.M.; Corey, R. B.; Moore, R.W. (1924). "Germanium. VII. The Hydrides of Germanium". J. Am. Chem. Soc. 46 (3): 657–674. doi:10.1021/ja01668a015.
  4. Pauling, L.; Laubengayer, A.W.; Hoard, J.L. (1938). "The electron diffraction study of digermane and trigermane". J. Am. Chem. Soc. 60 (7): 1605–1607. doi:10.1021/ja01274a024.
  5. Jolly, William L.; Drake, John E. (1963). Hydrides of Germanium, Tin, Arsenic, and Antimony. Inorganic Syntheses. Vol. 7. pp. 34–44. doi:10.1002/9780470132388.ch10. ISBN   9780470132388.
  6. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  7. Emeleus, H.J.; Gardner, E.R. "The oxidation of monogermane and digermane". J. Chem. Soc. 1938: 1900–1909. doi:10.1039/jr9380001900.
  8. Dreyfuss, R.M.; Jolly, W.L. (1968). "Disproportionation of digermane in liquid ammonia". Inorganic Chemistry. 7 (12): 2645–2646. doi:10.1021/ic50070a037.
  9. Johnson, O.H. (1951). "The Germanes and their Organo Derivatives". Chem. Rev. 48 (2): 259–297. doi:10.1021/cr60150a003. PMID   24540662.
  10. Gamalski, A.D.; Tersoff, J.; Sharma, R.; Ducati, C.; Hofmann, S. (2010). "Formation of Metastable Liquid Catalyst during Subeutectic Growth of Germanium Nanowires". Nano Lett. 10 (8): 2972–2976. Bibcode:2010NanoL..10.2972G. doi:10.1021/nl101349e. PMID   20608714.
  11. Holmes-Smith, R.D.; Stobart, S.R. (1979). "Trifluoromethylthio and trifluoromethylseleno derivatives of germane and digermane". Inorg. Chem. 18 (3): 538–543. doi:10.1021/ic50193a002.
  12. Xie, J.; Chizmeshya, A.V.G.; Tolle, J.; D'Costa, V.R.; Menendez, J.; Kouventakis, J. (2010). "Synthesis, Stability Range, and Fundamental Properties of Si-Ge-Sn Semiconductors Grown Directly on Si(100) and Ge(100) Platforms". Chemistry of Materials. 22 (12): 3779–3789. doi:10.1021/cm100915q.