Cadmium hydride

Last updated
Cadmium hydride
Names
Other names
Cadmium(II) hydride
Cadmium dihydride
Identifiers
3D model (JSmol)
ChemSpider
  • InChI=1S/Cd.2H/q+2;2*-1 X mark.svgN
    Key: IVRSYBKJJXDUEX-UHFFFAOYSA-N X mark.svgN
  • InChI=1/Cd.2H/q+2;2*-1
    Key: IVRSYBKJJXDUEX-UHFFFAOYAR
  • [H-].[H-].[Cd+2]
Properties
CdH
2
Molar mass 113.419 g mol−1
Hazards
NIOSH (US health exposure limits):
PEL (Permissible)
[1910.1027] TWA 0.005 mg/m3 (as Cd) [1]
REL (Recommended)
Ca [1]
IDLH (Immediate danger)
Ca [9 mg/m3 (as Cd)] [1]
Related compounds
Related compounds
Mercury(II) hydride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Cadmium hydride (systematically named cadmium dihydride) is an inorganic compound with the chemical formula (CdH
2
)
n
(also written as ([CdH
2
]
)
n
or CdH
2
). It is a solid, known only as a thermally unstable, insoluble white powder.

Contents

Nomenclature

The systematic name cadmium dihydride, a valid IUPAC name, is constructed according to the compositional nomenclature. Cadmium dihydride is also used to refer to the related molecular compound dihydridocadmium and its oligomers. Care should be taken to avoid confusing the two compounds.[ citation needed ]

Cadmium hydride is also used as a compositional IUPAC name for the compound with the chemical formula CdH.

History

In 1950 a research group led by Glenn D. Barbaras, synthesized cadmium hydride for the first time. This reaction sequence consisted of demethylation [ dubious ] of dimethylcadmium in diethyl ether at −78 °C, to cadmium hydride. [2]

Chemical properties

Solid cadmium hydride, on the basis of its infrared spectrum, is believed to contain hydrogen-bridge bonds. [3] Other lower metal hydrides polymerize in a similar fashion. Unless cooled below −20 °C (−4 °F), cadmium hydride rapidly decomposes to produce cadmium and hydrogen: [2]

(CdH
2
)
n
n Cd + nH
2

Dihydridocadmium

Dihydridocadmium is the monomeric, molecular form with the chemical formula CdH
2
(also written [CdH
2
]
). It is a colorless gas that does not persist undiluted. Dihydridocadmium has a low activation barrier toward autopolymerisation into the standard form of cadmium hydride and would rapidly do so in undiluted concentrations. Since the activation barrier for the reverse reaction is much greater than that of the decomposition reaction, autopolymerisation of dihydridocadmium may be considered as irreversible for most intents and purposes. It was produced by the gas phase reaction of excited cadmium atoms with dihydrogen, H2, and the structure determined high-resolution infrared emission spectra. The molecule is linear, with a bond length of 168.3 pm. [4]

Chemical properties

The two-coordinate hydridocadmium group (-CdH) in hydridocadmiums such as dihydridocadmium can accept an electron-pair donating ligand into the molecule by adduction: [3]

[CdH
2
] + L → [CdH
2
L]

Because of this acceptance of the electron-pair donating ligand (L), dihydridocadmium has Lewis-acidic character. Dihydridocadmium can accept two electron-pairs from ligands, as in the case of the tetrahydridocadmate(2−) anion (CdH2−
4
).

The compound, Cs3CdH5, prepared by the reaction of caesium hydride, CsH, and cadmium metal powder at high temperature contains the CdH2−
4
ion, along with caesium cations, Cs+, and hydride anions, H. The tetrahedral anion is an example of an ionic complex of CdH2. The average Cd-H bond length in CdH2−
4
is 182pm. [5]

In gaseous dihydridocadmium, the molecules form groups (trimers), being connected by van der Waals forces. The dissociation enthalpy of the dimer is estimated at 8.8 kJ mol−1. [3]

Related Research Articles

<span class="mw-page-title-main">Hydride</span> Molecule with a hydrogen bound to a more electropositive element or group

In chemistry, a hydride is formally the anion of hydrogen (H), a hydrogen atom with two electrons. The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride of nitrogen, etc. For inorganic chemists, hydrides refer to compounds and ions in which hydrogen is covalently attached to a less electronegative element. In such cases, the H centre has nucleophilic character, which contrasts with the protic character of acids. The hydride anion is very rarely observed.

<span class="mw-page-title-main">Cadmium sulfide</span> Chemical compound

Cadmium sulfide is the inorganic compound with the formula CdS. Cadmium sulfide is a yellow solid. It occurs in nature with two different crystal structures as the rare minerals greenockite and hawleyite, but is more prevalent as an impurity substituent in the similarly structured zinc ores sphalerite and wurtzite, which are the major economic sources of cadmium. As a compound that is easy to isolate and purify, it is the principal source of cadmium for all commercial applications. Its vivid yellow color led to its adoption as a pigment for the yellow paint "cadmium yellow" in the 18th century.

<span class="mw-page-title-main">Stibine</span> Chemical compound

Stibine (IUPAC name: stibane) is a chemical compound with the formula SbH3. A pnictogen hydride, this colourless, highly toxic gas is the principal covalent hydride of antimony, and a heavy analogue of ammonia. The molecule is pyramidal with H–Sb–H angles of 91.7° and Sb–H distances of 170.7 pm (1.707 Å). This gas has an offensive smell like hydrogen sulfide (rotten eggs).

Borderline hydrides typically refer to hydrides formed of hydrogen and elements of the periodic table in group 11 and group 12 and indium (In) and thallium (Tl). These compounds have properties intermediate between covalent hydrides and saline hydrides. Hydrides are chemical compounds that contain a metal and hydrogen acting as a negative ion.

Plutonium hydride is a non-stoichiometric chemical compound with the formula PuH2+x. It is one of two characterised hydrides of plutonium, the other is PuH3. PuH2 is non-stoichiometric with a composition range of PuH2 – PuH2.7. Additionally metastable stoichiometries with an excess of hydrogen (PuH2.7 – PuH3) can be formed. PuH2 has a cubic structure. It is readily formed from the elements at 1 atmosphere at 100–200 °C: When the stoichiometry is close to PuH2 it has a silver appearance, but gets blacker as the hydrogen content increases, additionally the color change is associated with a reduction in conductivity.

Transition metal hydrides are chemical compounds containing a transition metal bonded to hydrogen. Most transition metals form hydride complexes and some are significant in various catalytic and synthetic reactions. The term "hydride" is used loosely: some of them are acidic (e.g., H2Fe(CO)4), whereas some others are hydridic, having H-like character (e.g., ZnH2).

<span class="mw-page-title-main">Beryllium hydride</span> Chemical compound

Beryllium hydride is an inorganic compound with the chemical formula n. This alkaline earth hydride is a colourless solid that is insoluble in solvents that do not decompose it. Unlike the ionically bonded hydrides of the heavier Group 2 elements, beryllium hydride is covalently bonded.

<span class="mw-page-title-main">Magnesium hydride</span> Chemical compound

Magnesium hydride is the chemical compound with the molecular formula MgH2. It contains 7.66% by weight of hydrogen and has been studied as a potential hydrogen storage medium.

Zinc hydride is an inorganic compound with the chemical formula ZnH2. It is a white, odourless solid which slowly decomposes into its elements at room temperature; despite this it is the most stable of the binary first row transition metal hydrides. A variety of coordination compounds containing Zn–H bonds are used as reducing agents, however ZnH2 itself has no common applications.

<span class="mw-page-title-main">Chemical compound</span> Substance composed of multiple elements that are chemically bonded

A chemical compound is a chemical substance composed of many identical molecules containing atoms from more than one chemical element held together by chemical bonds. A molecule consisting of atoms of only one element is therefore not a compound. A compound can be transformed into a different substance by a chemical reaction, which may involve interactions with other substances. In this process, bonds between atoms may be broken and/or new bonds formed.

<span class="mw-page-title-main">Cobalt tetracarbonyl hydride</span> Chemical compound

Cobalt tetracarbonyl hydride is an organometallic compound with the formula HCo(CO)4. It is a volatile, yellow liquid that forms a colorless vapor and has an intolerable odor. The compound readily decomposes upon melt and in absentia of high CO partial pressures forms Co2(CO)8. Despite operational challenges associated with its handling, the compound has received considerable attention for its ability to function as a catalyst in hydroformylation. In this respect, HCo(CO)4 and related derivatives have received significant academic interest for their ability to mediate a variety of carbonylation (introduction of CO into inorganic compounds) reactions.

<span class="mw-page-title-main">Iron tetracarbonyl dihydride</span> Chemical compound

Iron tetracarbonyl dihydride is the organometallic compound with the formula H2Fe(CO)4. This compound was the first transition metal hydride discovered. The complex is stable at low temperatures but decomposes rapidly at temperatures above –20 °C.

Binary compounds of hydrogen are binary chemical compounds containing just hydrogen and one other chemical element. By convention all binary hydrogen compounds are called hydrides even when the hydrogen atom in it is not an anion. These hydrogen compounds can be grouped into several types.

Mercury(I) hydride is an inorganic compound with the chemical formula HgH. It has not yet been obtained in bulk, hence its bulk properties remain unknown. However, molecular mercury(I) hydrides with the formulae HgH and Hg
2
H
2
have been isolated in solid gas matrices. The molecular hydrides are very unstable toward thermal decomposition. As such the compound is not well characterised, although many of its properties have been calculated via computational chemistry.

Titanium(IV) hydride is an inorganic compound with the empirical chemical formula TiH
4
. It has not yet been obtained in bulk, hence its bulk properties remain unknown. However, molecular titanium(IV) hydride has been isolated in solid gas matrices. The molecular form is a colourless gas, and very unstable toward thermal decomposition. As such the compound is not well characterised, although many of its properties have been calculated via computational chemistry.

<span class="mw-page-title-main">Iron hydride</span> Index of articles associated with the same name

An iron hydride is a chemical system which contains iron and hydrogen in some associated form.

<span class="mw-page-title-main">Mercury(II) hydride</span> Chemical compound

Mercury(II) hydride is an inorganic compound with the chemical formula HgH
2
. It is both thermodynamically and kinetically unstable at ambient temperature, and as such, little is known about its bulk properties. However, it known as a white, crystalline solid, which is kinetically stable at temperatures below −125 °C (−193 °F), which was synthesised for the first time in 1951.

<span class="mw-page-title-main">Chromium(I) hydride</span> Chemical compound

Chromium(I) hydride, systematically named chromium hydride, is an inorganic compound with the chemical formula (CrH)
n
. It occurs naturally in some kinds of stars where it has been detected by its spectrum. However, molecular chromium(I) hydride with the formula CrH has been isolated in solid gas matrices. The molecular hydride is very reactive. As such the compound is not well characterised, although many of its properties have been calculated via computational chemistry.

Chromium(II) hydride, systematically named chromium dihydride and poly­(dihydridochromium) is pale brown solid inorganic compound with the chemical formula (CrH2)n. Although it is thermodynamically unstable toward decomposition at ambient temperatures, it is kinetically metastable.

Iron(II) hydride, systematically named iron dihydride and poly(dihydridoiron) is solid inorganic compound with the chemical formula (FeH
2
)
n
(also written ([FeH
2
]
)n or FeH
2
). ). It is kinetically unstable at ambient temperature, and as such, little is known about its bulk properties. However, it is known as a black, amorphous powder, which was synthesised for the first time in 2014.

References

  1. 1 2 3 NIOSH Pocket Guide to Chemical Hazards. "#0087". National Institute for Occupational Safety and Health (NIOSH).
  2. 1 2 Barbaras, Glenn D.; Dillard, Clyde; Finholt, A. E.; Wartik, Thomas; Wilzbach, K. E.; Schlesinger, Hermann I. (October 1951). "The Preparation of the Hydrides of Zinc, Cadmium, Beryllium, Magnesium and Lithium by the Use of Lithium Aluminum Hydride". Journal of the American Chemical Society. ACS Publications. 73 (10): 4585–4590. doi:10.1021/ja01154a025.
  3. 1 2 3 Wang, Xuefeng; Andrews, Lester (December 2004). "Infrared Spectra of Zn and Cd Hydride Molecules and Solids". The Journal of Physical Chemistry A. ACS Publications. 108 (50): 11006–11013. Bibcode:2004JPCA..10811006W. doi:10.1021/jp046414m.
  4. Shayesteh, Alireza; Yu, Shanshan; Bernath, Peter F. (2005). "Gaseous HgH2, CdH2, and ZnH2". Chemistry: A European Journal. 11 (16): 4709–4712. doi:10.1002/chem.200500332. ISSN   0947-6539. PMID   15912545.
  5. Bortz, M.; Gutmann, M.; Yvon, K. (1999). "Synthesis and structure determination of the first ternary cadmium hydride, Cs3CdH5". Journal of Alloys and Compounds. 285 (1–2): L19–L21. doi:10.1016/S0925-8388(99)00031-6. ISSN   0925-8388.