Cadmium selenide

Last updated
Cadmium selenide
Wurtzite polyhedra.png
Cadmium selenide.jpg
Names
IUPAC name
Selanylidenecadmium [1]
Other names
Cadmium(2+) selenide [2]
Cadmium(II) selenide [2]
, cadmoselite
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.013.772 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 215-148-3
13656
MeSH cadmium+selenide
PubChem CID
RTECS number
  • EV2300000
UNII
UN number 2570
  • InChI=1S/Cd.Se Yes check.svgY
    Key: AQCDIIAORKRFCD-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/Cd.Se/rCdSe/c1-2
    Key: AQCDIIAORKRFCD-BBSQRNTLAE
  • [Se]=[Cd]
Properties
CdSe
Molar mass 191.385 g·mol−1
AppearanceBlack, translucent, adamantine crystals
Odor Odorless
Density 5.81 g cm−3 [3]
Melting point 1,240 °C (2,260 °F; 1,510 K) [3]
Band gap 1.74 eV, both for hex. and sphalerite [4]
2.5
Structure
Wurtzite
C6v4-P63mc
Hexagonal
Hazards
GHS labelling:
GHS-pictogram-skull.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
Danger
H301, H312, H331, H373, H410
P261, P273, P280, P301+P310, P311, P501
NIOSH (US health exposure limits):
PEL (Permissible)
[1910.1027] TWA 0.005 mg/m3 (as Cd) [5]
REL (Recommended)
Ca [5]
IDLH (Immediate danger)
Ca [9 mg/m3 (as Cd)] [5]
Related compounds
Other anions
Cadmium oxide,
Cadmium sulfide,
Cadmium telluride
Other cations
Zinc selenide,
Mercury(II) selenide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Cadmium selenide is an inorganic compound with the formula Cd Se. It is a black to red-black solid that is classified as a II-VI semiconductor of the n-type. It is a pigment but applications are declining because of environmental concerns [6]

Contents

Structure

Three crystalline forms of CdSe are known which follow the structures of: wurtzite (hexagonal), sphalerite (cubic) and rock-salt (cubic). The sphalerite CdSe structure is unstable and converts to the wurtzite form upon moderate heating. The transition starts at about 130 °C, and at 700 °C it completes within a day. The rock-salt structure is only observed under high pressure. [7]

Production

The production of cadmium selenide has been carried out in two different ways. The preparation of bulk crystalline CdSe is done by the High-Pressure Vertical Bridgman method or High-Pressure Vertical Zone Melting. [8]

Cadmium selenide may also be produced in the form of nanoparticles. (see applications for explanation) Several methods for the production of CdSe nanoparticles have been developed: arrested precipitation in solution, synthesis in structured media, high temperature pyrolysis, sonochemical, and radiolytic methods are just a few. [9] [10]

Atomic resolution image of a CdSe nanoparticle. CdSe Nanoparticle.png
Atomic resolution image of a CdSe nanoparticle.

Production of cadmium selenide by arrested precipitation in solution is performed by introducing alkylcadmium and trioctylphosphine selenide (TOPSe) precursors into a heated solvent under controlled conditions. [11]

Me2Cd + TOPSe → CdSe + (byproducts)

CdSe nanoparticles can be modified by production of two phase materials with ZnS coatings. The surfaces can be further modified, e.g. with mercaptoacetic acid, to confer solubility. [12]

Synthesis in structured environments refers to the production of cadmium selenide in liquid crystal or surfactant solutions. The addition of surfactants to solutions often results in a phase change in the solution leading to a liquid crystallinity. A liquid crystal is similar to a solid crystal in that the solution has long range translational order. Examples of this ordering are layered alternating sheets of solution and surfactant, micelles, or even a hexagonal arrangement of rods.

High temperature pyrolysis synthesis is usually carried out using an aerosol containing a mixture of volatile cadmium and selenium precursors. The precursor aerosol is then carried through a furnace with an inert gas, such as hydrogen, nitrogen, or argon. In the furnace the precursors react to form CdSe as well as several by-products. [9]

CdSe nanoparticles

A photograph and representative spectrum of photoluminescence from colloidal CdSe quantum dots excited by UV light. CdSeqdots.jpg
A photograph and representative spectrum of photoluminescence from colloidal CdSe quantum dots excited by UV light.

CdSe-derived nanoparticles with sizes below 10 nm exhibit a property known as quantum confinement. Quantum confinement results when the electrons in a material are confined to a very small volume. Quantum confinement is size dependent, meaning the properties of CdSe nanoparticles are tunable based on their size. [13] One type of CdSe nanoparticle is a CdSe quantum dot. This discretization of energy states results in electronic transitions that vary by quantum dot size. Larger quantum dots have closer electronic states than smaller quantum dots which means that the energy required to excite an electron from HOMO to the LUMO is lower than the same electronic transition in a smaller quantum dot. This quantum confinement effect can be observed as a red shift in absorbance spectra for nanocrystals with larger diameters. Quantum confinement effects in quantum dots can also result in fluorescence intermittency, called "blinking." [14]

CdSe quantum dots have been implemented in a wide range of applications including solar cells, [15] light emitting diodes, [16] and biofluorescent tagging. CdSe-based materials also have potential uses in biomedical imaging. Human tissue is permeable to near infra-red light. By injecting appropriately prepared CdSe nanoparticles into injured tissue, it may be possible to image the tissue in those injured areas. [17] [18]

CdSe quantum dots are usually composed of a CdSe core and a ligand shell. Ligands play important roles in the stability and solubility of the nanoparticles. During synthesis, ligands stabilize growth to prevent aggregation and precipitation of the nanocrystals. These capping ligands also affect the quantum dot's electronic and optical properties by passivating surface electronic states. [19] An application that depends on the nature of the surface ligands is the synthesis of CdSe thin films. [20] [21] The density of the ligands on the surface and the length of the ligand chain affect the separation between nanocrystal cores which in turn influence stacking and conductivity. Understanding the surface structure of CdSe quantum dots in order to investigate the structure's unique properties and for further functionalization for greater synthetic variety requires a rigorous description of the ligand exchange chemistry on the quantum dot surface.

A prevailing belief is that trioctylphosphine oxide (TOPO) or trioctylphosphine (TOP), a neutral ligand derived from a common precursor used in the synthesis of CdSe dots, caps the surface of CdSe quantum dots. However, results from recent studies challenge this model. Using NMR, quantum dots have been shown to be nonstoichiometric meaning that the cadmium to selenide ratio is not one to one. CdSe dots have excess cadmium cations on the surface that can form bonds with anionic species such as carboxylate chains. [22] The CdSe quantum dot would be charge unbalanced if TOPO or TOP were indeed the only type of ligand bound to the dot.

The CdSe ligand shell may contain both X type ligands which form covalent bonds with the metal and L type ligands that form dative bonds. It has been shown that these ligands can undergo exchange with other ligands. Examples of X type ligands that have been studied in the context of CdSe nanocrystal surface chemistry are sulfides and thiocyanates. Examples of L type ligands that have been studied are amines and phosphines (ref). A ligand exchange reaction in which tributylphosphine ligands were displaced by primary alkylamine ligands on chloride terminated CdSe dots has been reported. [23] Stoichiometry changes were monitored using proton and phosphorus NMR. Photoluminescence properties were also observed to change with ligand moiety. The amine bound dots had significantly higher photoluminescent quantum yields than the phosphine bound dots.

Applications

CdSe material is transparent to infra-red (IR) light and has seen limited use in photoresistors and in windows for instruments utilizing IR light. The material is also highly luminescent. [24] CdSe is a component of the pigment cadmium orange. CdSe can also serve as the n-type semiconductor layer in photovoltaic cells. [25]

Natural occurrence

CdSe occurs in the nature as the very rare mineral cadmoselite. [26] [27]

Safety information

Cadmium is a toxic heavy metal and appropriate precautions should be taken when handling it and its compounds. Selenides are toxic in large amounts. Cadmium selenide is a known carcinogen to humans and medical attention should be sought if swallowed, dust inhaled, or if contact with skin or eyes occurs. [28] [29]

Related Research Articles

<span class="mw-page-title-main">Quantum dot</span> Zero-dimensional, nano-scale semiconductor particles with novel optical and electronic properties

Quantum dots (QDs), also called semiconductor nanocrystals, are semiconductor particles a few nanometres in size, having optical and electronic properties that differ from those of larger particles as a result of quantum mechanical effects. They are a central topic in nanotechnology and materials science. When the quantum dots are illuminated by UV light, an electron in the quantum dot can be excited to a state of higher energy. In the case of a semiconducting quantum dot, this process corresponds to the transition of an electron from the valence band to the conductance band. The excited electron can drop back into the valence band releasing its energy as light. This light emission (photoluminescence) is illustrated in the figure on the right. The color of that light depends on the energy difference between the conductance band and the valence band, or the transition between discrete energy states when the band structure is no longer well-defined in QDs.

<span class="mw-page-title-main">Potential well</span> Concept in quantum mechanics

A potential well is the region surrounding a local minimum of potential energy. Energy captured in a potential well is unable to convert to another type of energy because it is captured in the local minimum of a potential well. Therefore, a body may not proceed to the global minimum of potential energy, as it would naturally tend to do due to entropy.

A selenide is a chemical compound containing a selenium with oxidation number of −2. Similar to sulfide, selenides occur both as inorganic compounds and as organic derivatives, which are called organoselenium compound.

<span class="mw-page-title-main">Silver(I) selenide</span> Chemical compound

Silver selenide (Ag2Se) is the reaction product formed when selenium toning analog silver gelatine photo papers in photographic print toning. The selenium toner contains sodium selenite (Na2SeO3) as one of its active ingredients, which is the source of the selenide (Se2−) anion combining with the silver in the toning process.

<span class="mw-page-title-main">Quantum dot solar cell</span> Type of solar cell based on quantum dot devices

A quantum dot solar cell (QDSC) is a solar cell design that uses quantum dots as the captivating photovoltaic material. It attempts to replace bulk materials such as silicon, copper indium gallium selenide (CIGS) or cadmium telluride (CdTe). Quantum dots have bandgaps that are adjustable across a wide range of energy levels by changing their size. In bulk materials, the bandgap is fixed by the choice of material(s). This property makes quantum dots attractive for multi-junction solar cells, where a variety of materials are used to improve efficiency by harvesting multiple portions of the solar spectrum.

<span class="mw-page-title-main">Louis E. Brus</span> American chemist

Louis Eugene Brus is the Samuel Latham Mitchell Professor of Chemistry at Columbia University. He is the co-discoverer of the colloidal semi-conductor nanocrystals known as quantum dots. In 2023, he was awarded the Nobel Prize in Chemistry.

<span class="mw-page-title-main">Gallium(II) selenide</span> Chemical compound

Gallium(II) selenide (GaSe) is a chemical compound. It has a hexagonal layer structure, similar to that of GaS. It is a photoconductor, a second harmonic generation crystal in nonlinear optics, and has been used as a far-infrared conversion material at 14–31 THz and above.

<span class="mw-page-title-main">Cadmium acetate</span> Chemical compound

Cadmium acetate is the chemical compound with the formula Cd(O2CCH3)2(H2O)2. The compound is marketed both as the anhydrous form and as a dihydrate, both of which are white or colorless. Only the dihydrate has been verified by X-ray crystallography.

eFluor Nanocrystal

eFluor nanocrystals are a class of fluorophores made of semiconductor quantum dots. The nanocrystals can be provided as either primary amine, carboxylate, or non-functional groups on the surface, allowing conjugation to biomolecules of a researcher's choice. The nanocrystals can be conjugated to primary antibodies which are used for flow cytometry, immunohistochemistry, microarrays, in vivo imaging and microscopy.

<span class="mw-page-title-main">Nanocrystal solar cell</span>

Nanocrystal solar cells are solar cells based on a substrate with a coating of nanocrystals. The nanocrystals are typically based on silicon, CdTe or CIGS and the substrates are generally silicon or various organic conductors. Quantum dot solar cells are a variant of this approach which take advantage of quantum mechanical effects to extract further performance. Dye-sensitized solar cells are another related approach, but in this case the nano-structuring is a part of the substrate.

<span class="mw-page-title-main">Core–shell semiconductor nanocrystal</span>

Core–shell semiconducting nanocrystals (CSSNCs) are a class of materials which have properties intermediate between those of small, individual molecules and those of bulk, crystalline semiconductors. They are unique because of their easily modular properties, which are a result of their size. These nanocrystals are composed of a quantum dot semiconducting core material and a shell of a distinct semiconducting material. The core and the shell are typically composed of type II–VI, IV–VI, and III–V semiconductors, with configurations such as CdS/ZnS, CdSe/ZnS, CdSe/CdS, and InAs/CdSe Organically passivated quantum dots have low fluorescence quantum yield due to surface related trap states. CSSNCs address this problem because the shell increases quantum yield by passivating the surface trap states. In addition, the shell provides protection against environmental changes, photo-oxidative degradation, and provides another route for modularity. Precise control of the size, shape, and composition of both the core and the shell enable the emission wavelength to be tuned over a wider range of wavelengths than with either individual semiconductor. These materials have found applications in biological systems and optics.

Blinking colloidal nanocrystals is a phenomenon observed during studies of single colloidal nanocrystals that show that they randomly turn their photoluminescence on and off even under continuous light illumination. This has also been described as luminescence intermittency. Similar behavior has been observed in crystals made of other materials. For example, porous silicon also exhibits this affect.

<span class="mw-page-title-main">DNA-functionalized quantum dots</span>

DNA-functionalization of quantum dots is the attachment of strands of DNA to the surface of a quantum dot. Although quantum dots with cadmium (Cd) have some cytotoxic release, researchers have functionalized quantum dots for biocompatibility and bound them to DNA in order to combine the advantages of both materials. Quantum dots are commonly used for imaging biological systems in vitro and in vivo in animal studies due to their excellent optical properties when excited by light, while DNA has numerous bioengineering applications, including: genetic engineering, self-assembling nanostructures, protein binding, and biomarkers. The ability to visualize the chemical and biological processes of DNA allows feedback to optimize and learn about these small scale behaviors.

Quantum dots (QDs) are semiconductor nanoparticles with a size less than 10 nm. They exhibited size-dependent properties especially in the optical absorption and the photoluminescence (PL). Typically, the fluorescence emission peak of the QDs can be tuned by changing their diameters. So far, QDs were consisted of different group elements such as CdTe, CdSe, CdS in the II-VI category, InP or InAs in the III-V category, CuInS2 or AgInS2 in the I–III–VI2 category, and PbSe/PbS in the IV-VI category. These QDs are promising candidates as fluorescent labels in various biological applications such as bioimaging, biosensing and drug delivery.

Moungi Bawendi is an American–Tunisian–French chemist. He is currently the Lester Wolfe Professor at the Massachusetts Institute of Technology. Bawendi is known for his advances in the chemical production of high-quality quantum dots. In 2023 he was awarded the Nobel Prize in Chemistry.

<span class="mw-page-title-main">Perovskite nanocrystal</span> Class of semiconductor nanocrystals

Perovskite nanocrystals are a class of semiconductor nanocrystals, which exhibit unique characteristics that separate them from traditional quantum dots. Perovskite nanocrystals have an ABX3 composition where A = cesium, methylammonium (MA), or formamidinium (FA); B = lead or tin; and X = chloride, bromide, or iodide.

Uri Banin is an Israeli chemist and a professor at the Hebrew University of Jerusalem, currently holding the Alfred & Erica Larisch Memorial Chair at the Institute of Chemistry. He is recognized as one of the pioneers of nanoscience in Israel.

Hedi Mattoussi is a Tunisian-American materials scientist and professor at Florida State University. His research considers colloidal inorganic nanocrystals for biological imaging and sensing. He is a Fellow of the American Physical Society, American Chemical Society and Materials Research Society.

Silicon quantum dots are metal-free biologically compatible quantum dots with photoluminescence emission maxima that are tunable through the visible to near-infrared spectral regions. These quantum dots have unique properties arising from their indirect band gap, including long-lived luminescent excited-states and large Stokes shifts. A variety of disproportionation, pyrolysis, and solution protocols have been used to prepare silicon quantum dots, however it is important to note that some solution-based protocols for preparing luminescent silicon quantum dots actually yield carbon quantum dots instead of the reported silicon. The unique properties of silicon quantum dots lend themselves to an array of potential applications: biological imaging, luminescent solar concentrators, light emitting diodes, sensors, and lithium-ion battery anodes.

Christopher Bruce Murray is the Richard Perry University Professor of Chemistry and Materials Science and Engineering at the University of Pennsylvania. He is a member of the National Academy of Engineering and a Fellow of the Materials Research Society. He was a Clarivate Citation Laureate in 2020. He is known for his contributions to quantum dots and other nanoscale materials.

References

  1. "cadmium selenide – PubChem Public Chemical Database". The PubChem Project. USA: Nation Center for Biotechnology Information. Descriptors Computed from Structure.
  2. 1 2 "cadmium selenide (CHEBI:50834)". Chemical Entities of Biological Interest (ChEBI). UK: European Bioinformatics Institute. IUPAC Names.
  3. 1 2 Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, FL: CRC Press. p. 4.54. ISBN   1-4398-5511-0.
  4. Ninomiya, Susumu; Adachi, Sadao (1995). "Optical properties of cubic and hexagonal Cd Se". Journal of Applied Physics. 78 (7): 4681. Bibcode:1995JAP....78.4681N. doi:10.1063/1.359815.
  5. 1 2 3 NIOSH Pocket Guide to Chemical Hazards. "#0087". National Institute for Occupational Safety and Health (NIOSH).
  6. Langner, Bernd E. (2000). "Selenium and Selenium Compounds". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a23_525. ISBN   3527306730.
  7. Lev Isaakovich Berger (1996). Semiconductor materials . CRC Press. p.  202. ISBN   0-8493-8912-7.
  8. "II-VI compound crystal growth, HPVB & HPVZM basics". Archived from the original on 2005-09-15. Retrieved 2006-01-30.
  9. 1 2 Didenko, Yt; Suslick, Ks (Sep 2005). "Chemical aerosol flow synthesis of semiconductor nanoparticles" (PDF). Journal of the American Chemical Society. 127 (35): 12196–7. CiteSeerX   10.1.1.691.2641 . doi:10.1021/ja054124t. ISSN   0002-7863. PMID   16131177. Archived from the original (PDF) on 2017-09-21. Retrieved 2019-09-02.
  10. 1 2 Haitao Zhang; Bo Hu; Liangfeng Sun; Robert Hovden; Frank W. Wise; David A. Muller; Richard D. Robinson (Sep 2011). "Surfactant Ligand Removal and Rational Fabrication of Inorganically Connected Quantum Dots". Nano Letters. 11 (12): 5356–5361. Bibcode:2011NanoL..11.5356Z. doi:10.1021/nl202892p. PMID   22011091.
  11. Murray, C. B.; Norris, D. J.; Bawendi, M. G. (1993). "Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites". Journal of the American Chemical Society. 115 (19): 8706–8715. doi:10.1021/ja00072a025.
  12. Somers, Rebecca C.; Bawendi, Moungi G.; Nocera, Daniel G. (2007). "CdSe nanocrystal based chem-/bio- sensors". Chemical Society Reviews. 36 (4): 579–591. doi:10.1039/B517613C. PMID   17387407.
  13. Nanotechnology Structures – Quantum Confinement
  14. Cordones, Amy A.; Leone, Stephen R. (2013-03-25). "Mechanisms for charge trapping in single semiconductor nanocrystals probed by fluorescence blinking". Chemical Society Reviews. 42 (8): 3209–3221. doi:10.1039/C2CS35452G. ISSN   1460-4744. PMID   23306775.
  15. Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P.V. (2006). "Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films". J. Am. Chem. Soc. 128 (7): 2385–2393. doi:10.1021/ja056494n. PMID   16478194.
  16. Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. (1994). "Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer". Nature. 370 (6488): 354–357. Bibcode:1994Natur.370..354C. doi:10.1038/370354a0. S2CID   4324973.
  17. Chan, W. C.; Nie, S. M. (1998). "Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection". Science. 281 (5385): 2016–8. Bibcode:1998Sci...281.2016C. doi:10.1126/science.281.5385.2016. PMID   9748158.
  18. Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. (1998). "Semiconductor nanocrystals as fluorescent biological labels". Science. 281 (5385): 2013–6. Bibcode:1998Sci...281.2013B. doi:10.1126/science.281.5385.2013. PMID   9748157.
  19. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. (2000). "Synthesis and Characterization of Monodisperse Nanocrystals and Close-packed Nanocrystal Assemblies". Annu. Rev. Mater. Sci. 30: 545–610. Bibcode:2000AnRMS..30..545M. doi:10.1146/annurev.matsci.30.1.545.
  20. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. (1995). "Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices". Science. 270 (5240): 1335–1338. Bibcode:1995Sci...270.1335M. doi:10.1126/science.270.5240.1335. S2CID   135789570.
  21. Islam, M. A.; Xia, Y. Q.; Telesca, D. A.; Steigerwald, M. L.; Herman, I. P. (2004). "Controlled Electrophoretic Deposition of Smooth and Robust Films of CdSe Nanocrystals". Chem. Mater. 16: 49–54. doi:10.1021/cm0304243.
  22. Owen, J. S.; Park, J.; Trudeau, P.E.; Alivisatos, A. P. (2008). "Reaction chemistry and ligand exchange at cadmium-selenide nanocrystal surfaces" (PDF). J. Am. Chem. Soc. 130 (37): 12279–12281. doi:10.1021/ja804414f. PMID   18722426. S2CID   2099893.
  23. Anderson, N. A.; Owen, J. S. (2013). "Soluble, Chloride-Terminated CdSe Nanocrystals: Ligand Exchange Monitored by 1H and 31P NMR Spectroscopy". Chem. Mater. 25: 69–76. doi:10.1021/cm303219a.
  24. Efros, Al. L.; Rosen, M. (2000). "The electronic structure of semiconductor nanocrystals". Annual Review of Materials Science . 30: 475–521. Bibcode:2000AnRMS..30..475E. doi:10.1146/annurev.matsci.30.1.475.
  25. "Solar Energy". American Elements. Retrieved 12 April 2023.
  26. "Cadmoselite".
  27. "List of Minerals". 21 March 2011.
  28. Additional safety information available at www.msdsonline.com, search 'cadmium selenide' (must register to use).
  29. CdSe Material Safety Data Sheet Archived 2015-09-24 at the Wayback Machine . sttic.com.ru