Selenogallate

Last updated

Selenogallates (or selenidogallates) are chemical compounds which contain anionic units of selenium connected to gallium. They can be considered as gallates where selenium substitutes for oxygen. Similar compounds include the thiogallates and selenostannates. They are in the category of chalcogenotrielates or more broadly chalcogenometallates. [1]

Contents

Formation

Selenogallates may be produced by heating a metal azide with gallium monoselenide and selenium in a sealed tube. [1]

Selenogallates containing Se2 units are formed by heating with selenium. Conversely, by heating, extra selenium vapour can be lost forming a compound with less selenium. [2]

Properties

Most selenogallates are semiconductors. Their resistance drops on exposure to light. Also selenogallates are often coloured, most often red.

Selenogallate structures can include rings such as the four-membered ring: [GaSeGaSe] or the five-membered [GaSeSeGaSe]. These can be linked into chains.

Use

Selenogallates are primarily of research interest. They are being researched for photovoltaic cells where efficiencies over 20% are possible, [3] and for photoconductors, and non-linear optical devices.

List

namechemmwcrystal systemspace groupunit cell ÅvolumedensitycommentCAS

no

references
LiGaSe2234.581orthorhombicPna21a=6.8478 b=8.2575 c=6.5521 Z=4370.54.206band gap 3.39; SHG [4]
[H2dap]4Ga4Se10 dap = 1,2-diaminopropane monoclinicC2/ca 10.821 b 10.820 c 21.386, β 97.265° [5]
[(dienH2)(dienH)3]Ga5Se10 dien = diethylenetriamine monoclinicP21/ca 6.3116 b 13.748 c 47.890 β 90.640°chain [6]
[(tetaH2)3(teta)]Ga6Se12 teta = triethylenetetramine monoclinicCca 20.566 b 25.896 c 12.785 β 125.568°chain [6]
[bappH2][Ga2Se4] bapp =1,4-Bis-(3-aminopropyl)piperazine 657.63triclinicP1a=6.3517 b=7.8498 c=10.7818 α=71.457° β=84.925° γ=72.084° Z=1484.932.30yellow; [7]
[1,3-pdaH2][Ga2Se2(Se2)(Se3)] 1,3-pda = 1,3-diaminopropane monoclinicP21a 7.5724 b 12.3856 c 8.0889 β 94.120°band gap 2.08 eV; GaSeSeSeGaSe & GaSeSeGaSe rings; red [8]
[1,4-bdaH2][Ga2Se3(Se2)] 1,4-bda = 1,4-diaminobutane monoclinicC2/ca 11.7660 b 11.7743 c 10.9763 β 110.170°band gap 2.32 eV; orange [8]
[Me2NH2]2[Ga2Se2(Se2)2]monoclinicP21/ca 14.13 b 8.456 c 14.07 β 100.32°band gap 2.07 eV; red [8]
α-[AEPH]2[Ga2Se2(Se2)2] AEP = N-(2-aminoethyl)piperazine monoclinicPna 6.981 b 15.436 c 11.831 β 91.462°band gap 1.93 eV; red [8]
β-[AEPH]2[Ga2Se2(Se2)2]monoclinicP21/ca 10.623 b 16.495 c 7.163 β 94.93°band gap 2.10 eV; red [8]
[Ga(en)3][Ga3Se7(en)] · H2O1090.02orthorhombicPna21a=14.279 b=9.616 c=19.676 Z=42701.62.680bicyclic Ga3Se7 [9]
NaGaS2monoclinicC2/ca 10.226 b 10.227 c 13.506 β 100.926°1389.9 [10]
NaGaS2•H2OmonoclinicC2/ca=9.5160 b=113986 c=17.8761 β=101.5901899 [10]
NaGa3Se5626.95orthorhombicP212121a=9.764 b=13.624 c=27.000 Z=163591.64.638 [11]
KGaSe2266.74monoclinicC2/ca = 10.878, b = 10.872, c = 15.380, β = 100.18° Z=161790.33.959air stable; light yellow; mp=965 °C; [Ga4Se10]8− units connected into sheets; band gap 2.60 eV [12]
Cr2.37Ga3Se8monoclinicC2/mmagnetic semiconductor; band gap 0.26 eV [13]
MnGa2Se4band gap 2.7 eV [14]
[Mn(en)3][Ga2Se5] en = Ethylenediamine 771.51orthorhombicPbcna=9.772 b=15.297 c=13.749 Z=42055.22.50red; {[Ga2Se5]2-}∞ chains Ga2Se2 and Ga2Se3 rings [7]
[Mn(dap)3]0.5GaSe2orthorhombicCmcma 9.645 b 16.754 c 12.891 [5]
[Mn(atep)]Ga2S4 atep = 4-(2-aminoethyl)triethylenetetramine monoclinicP21/na 9.909 b 11.947 c 14.831, β 102.268° [5]
[Co(en)3]Ga2SeorthorhombicCmcma 9.692 b 15.631 c 12.698band gap 3.27 eV [6]
{[Ni(tepa)]2SO4}[Ni(tepa)(Ga4S6(SH)4)] tepa = tetraethylenepentamine monoclinicC2/ca 38.829 b 12.290 c 22.471 β 98.398° [5]
cupric selenogallateCuGaSe2291.186tetragonala = 5.5963 c = 11.0036 Z=4344.6175.612metallic grey [15]
ZnGa2Se4tetragonalI42m [16]
ZnGa2Se4cubicFm3m>15.5GPa [16]
Na3Zn2Ga2Se4519.90tetragonalI41acda 13.481 c 19.26 Z=1635003.946red [17]
Na6Zn3Ga2Se9monoclinicC2/ca 16.71 b 16.69 c 13.79 β 101.346° [18]
KZn4Ga5Se12R3SHG [19]
LiGaGe2Se6695.60orthorhombicFdd2a 12.5035 b 23.710 c 7.11772110.14.336brown; band gap 2.64 eV; mp=710 °C [20] [21]
Li2Ga2GeS6orthorhombicFdd2a=12.0796 b=22.73 c=6.84048 [22]
NaGaGe3Se8monoclinicP21/ca 7.233 b 11.889 c 17.550 β 101.75° [23]
KGaGeSe4497.25monoclinicP21/ca=7.3552 b=12.4151 c=17.6213 β =97.026 Z=81597.024.136yellow [24]
RbGaSe2313.11monoclinicC2/ca = 10.954, b = 10.949, c = 16.064, β = 99.841° Z=161898.24.382colourless; mp=930 °C; 2[Ga4Se88−] layers of supertetrahedra; [1]
RbZn4Ga5Se12R3SHG [19]
RbGaGeSe4543.62orthorhombicPnmaa=17.5750 b=7.4718 c=12.4449 Z=81634.234.419orange [24]
AgGaSe2tetragonalI42da = 5.9921, c = 10.8835.71transparent from 0.71 to 18 µm; band gap ~1.7 [25]
AgGa5Se8P42ma=5.50 c=11.04band gap 2.1 eV [25]
Ag9GaSe6P213band gap 0.56 eV [25]
Ag9GaSe6cubicF43ma=11.126 [25]
LixAg1–xGaSe2 (x = 0.2–0.8)tetragonalI42dSHG [4]
Na0.45Ag0.55Ga3Se5trigonalR32a=13.466 c=16.495 Z=122590.5SHG 1.9 × AGS [26]
KAg3Ga8Se142025.91monoclinicCma 12.8805 b 11.6857 c 9.6600 β 115.998° Z=21306.875.148orange [27]
AgGaGe5Se12red; transparent for 0.6–16.5 μm; band gap 2.2 eV [28]
CdGa2Se4tetragonalI4a=5.3167 c=10.2858 Z=2semiconductor [29] [30]
CdGa2Se4cubicF43ma=5.64 Z=4>21 GPa metallic [30]
CdGa2Se4cubicFm3ma=5.03 Z=44-7.4 GPa [30]
KCd4Ga5Se12trigonalR3a 14.362 b 14.362 c 9.724 [31]
RbCd4Ga5Se12trigonalR3a 14.4055 b 14.4055 c 9.7688band gap 2.19 eV; SHG=19×AgGaS2 [32] [31]
InGaSe2tetragonalI4/mcma = 8.051, c = 6.317 Z=4 [33]
SnGa4Se7622.08monoclinicPca=7.269 b=6.361 c=12.408 β =106.556 Z=2549.93.757light yellow;SHG 3.8 × AgGaS2 [34]
KGaSnSe4-cP84543.35cubicPa3a=13.5555 Z=122490.84.347red [24]
RbGaSnSe4-cP84cubicPa3a=13.7200 Z=12589.724.550 [24]
RbGaSn2Se6866.33trigonalR3a=10.4697 c=9.476 Z=3899.54.798deep red [35]
SnGa2GeSe6804.48orthorhombicFdd2a = 47.195, b = 7.521, c = 12.183, Z = 1643244.943red; SHG 1.7 × AgGaS2
CsGaSe2-mC64monoclinicC2/ca = 11.043, b = 11.015, c = 16.810, β = 99.49°, Z = 162016.7light grey; layers of supertetrahedra 2[Ga4Se84–]; band gap 3.5 eV [36]
CsGaSe2-mC16monoclinicC2/ca = 7.651, b = 12.552, c = 6.170, β = 113.62°, Z = 4542.9over 610 °C; chains 1[GaSe2] [36]
CsGaSe3monoclinicP21/ca=7.727, b=13.014, c=6.705, β=106.39°, Z=4red; chains; band gap 2.25 eV [37]
Cs2Ga2Se5800.07monoclinicC2/ca = 15.3911, b = 7.3577, c = 12.9219, β = 126.395°, Z = 41177.894.51yellow; 1[Ga2Se3(Se2)2–] band gap 1.95 eV [38]
Cs4Ga6Se11triclinicP1a=9.707 b=9.888 c=16.780 α=76.425° β=77.076° γ=60.876°1356.31[Ga6Se11]4– [39]
Cs6Ga2Se6monoclinicP21/ca=8.480 b=13.644 c=11.115 β =126.22 Z=2mp=685 °C; isolated double tetrahedra [Ga2Se6]6− [40]
Cs8Ga4Se10triclinicP1a= 7.870 b=9.420 c=11.282 α=103.84° β=93.43° γ=80.88° Z=14.42tetrameric [41]
Cs10Ga6Se14monoclinicC2/ma=18.233 b=12.889 c=9.668 β=108.20 Z=24.39hexameric [41]
(Cs6Cl)6Cs3[Ga53Se96]16671.51trigonalR3ma = 11.990, c = 50.012 Z=16226.54.446yellow; band gap 2.74 eV [42]
CsZn4Ga5Se12trigonalR3 [19]
CsGaGeSe4591.06orthorhombicPnmaa=17.7666 b=7.5171 c=12.6383 Z=81687.94.652white [24]
Cs2Ge3Ga6Se142007.41P3m1a=7.6396 c=13.5866 Z=1686.724.854black [43]
CsAgGa2Se4monoclinicP21/ca=11.225, b=7.944, c=21.303, β=103.10, Z=81850.3layered [44]
CsCd4Ga5Se12trigonalR3a 14.4204 b 14.4204 c 9.7803band gap 2.21 eV; SHG=16×AgGaS2 [32] [31]
BaGa4Se7monoclinicPca = 7.625, b = 6.511, c = 14.702, β = 121.24°transparent between 0.47 and 18.0 μm; melts 968 °C; SHG [45] [46]
Ba4Ga2Se8132.48monoclinicP21/ca=13.2393 b=6.4305 c=20.6432 β =104.3148 Z=41702.905.151black air stable; band gap 1.51 eV [47] [48]
Ba5Ga2Se8orthorhombicCmcaa 23.433 b 12.461 c 12.214band gap 2.51 eV [49]
Ba5Ga4Se101755.18tetragonalI4/mcma = 8.752, c = 13.971 Z = 21070.25.447red; bicyclic ring with Ga-Ga bridge; band gap 2.20 eV [50]
Ba3GaSe4ClorthorhombicPnmaa 12.691 b 9.870 c 8.716 [51]
Ba3GaSe4BrorthorhombicPnmaa = 12.8248, b = 9.9608, c = 8.7690 Z = 4band gap 1.7 eV [52]
LiBa4Ga5Se121852.42tetragonalP421ca 13.591 c 6.515 Z=21203.35.113yellow; band gap 2.44 eV; SHG 1.7×AgGaS2 [32] [53]
NaBaGaSe3orthorhombicPnmaa 20.46 b 9.177 c 7.1771347colourless [54]
(Na0.60Ba0.70)Ga2Se4tetragonalI4cma 7.9549 c 6.2836397.64.725pale yellow [55]
KBa3Ga5Se10Cl2tetragonalI4a 8.6341 c 15.6441166.2band gap 2.04 eV; SHG=10×AgGaS2 [32] [56]
MnBa4Ga4Se10Cl2tetragonalI48.5858 c 15.7739band gap 2.8 eV; SHG=30×AgGaS2 [32] [57]
FeBa4Ga4Se10Cl2tetragonalI4a 8.578 c 15.717band gap 1.88 eV [32] [57]
CoBa4Ga4Se10Cl2tetragonalI4a 8.572 c 15.716band gap 2.02 eV [32] [57]
Cu0.5Ba4Ga4.5Se10Cl2tetragonalI4a 8.559 c 15.778band gap 2.6 eV; SHG=39×AgGaS2 [32] [57]
CuBa4Ga5Se12P421ca = 13.598, c = 6.527, Z = 2band gap 1.45 eV; SHG=3×AgGaS2 [32] [58]
ZnBa4Ga4Se10Cl2tetragonalI4a 8.561 c 15.757band gap 3.08 eV; SHG=59×AgGaS2 [32] [57]
Ba10Zn7Ga6Se26tetragonalI42ma 11.2907 c 21.760 Z=22774.05.151yellow [59]
Ba4Ga4GeSe121848.35tetragonalP421ca=13.5468 c=6.4915 Z=21191.295.153orange yellow; band gap 2.18 eV [47] [60]
BaGa2GeSe6R3 [61]
RbBa3Ga5Se10Cl2tetragonalI4a 8.6629 c 15.6379band gap 2.05 eV; SHG=20×AgGaS2 [32] [56]
Ba2GaYSe5triclinicP1a 7.2876Å b 8.6597Å c 9.3876Å, α 103.51° β 103.04° γ 107.43° [62]
Ba4AgGaSe61199.44orthorhombicPnmaa=9.1006 b=4.472 c=17.7572 Z=2722.715.512dark red; air stable; band gap 2.50 [63]
Ba4AgGa5Se121953.35tetragonalP421ca 13.6544 c 6.5215 Z=21215.95.335yellow [53]
Ba7AgGa5Se15trigonalP31ca 10.0467 c 18.689band gap 2.60 eV [64]
CdBa4Ga4Se10Cl2tetragonalI4a 8.611 c 15.805band gap 3.05 eV; SHG=52×AgGaS2 [32] [57]
Ba5CdGa6Se122401.82orthorhombicAma2a=24.2458 b=19.1582 c=6.6208 Z=43075.45.187yellow; air stable; band gap 2.60 eV; mp=866 °C [47] [65]
BaGa2SnSe6869.23trigonalR3a = 10.145, c = 9.249 Z = 3824.45.253red; SHG 5.2×AgGaS2 [66]
Ba4Ga4SnSe121894.45tetragonalP421ca 13.607 c 6.509 Z=21205.25.221red; band gap 2.16 eV [67]
Ba6Ga2SnSe111950.73monoclinicP21/ca 18.715 b 7.109 c 19.165, β 103.29°2481.55.221red; bad gap 1.99 eV [67]
Ba2AsGaSe5814.12orthorhombicPnmaa = 12.632, b = 8.973, c = 9.203, Z = 41043.15.184black [68]
CsBa3Ga5Se10Cl2tetragonalI4a 8.734 c 15.6971197.6band gap 2.08 eV; SHG=100×AgGaS2 [32] [56]
NaLaGa4Se8orthorhombicFddda 21.1979 b 21.1625 c 12.7216 [69]
La3MnGaSe71094.11hexagonalP63a 10.5894 c 6.3458 Z=2616.255.896black [70]
La3FeGaSe7hexagonalP63a=10.5042 c=6.3496606.74 [71]
La3CoGaSe7hexagonalP63a=10.5104 c=6.3708609.48 [71]
La3NiGaSe7hexagonalP63a=10.4826 c=6.3964608.71 [71]
La3CuGaSe71102.71hexagonalP63a=10.626 c=6.392 Z=2626.05.859 [47]
La3ZnGaSe71104.54hexagonalP63a=10.630 c=6.374 Z=2623.75.881 [47]
La3Ag0.6GaSe7hexagonalP63a=10.6, c=6.4 Z=2 [72]
La3CdGaSe7hexagonalP63a=10.606 c=6.380 Z=2621.56.153 [47]
Ba2GaLaSe5orthorhombicPnmaa 12.5049 b 9.6288 c 8.7355 [73]
NaCeGa4Se8orthorhombicFddda 21.141 b 21.138 c 12.712 [69]
Ce3CuGaSe71106.34hexagonalP63a=10.6007 c=6.3775 Z=2620.655.920 [47]
Ba2GaCeSe5orthorhombicFddda 12.494 b 9.599 c 8.738 [73]
Pr3CuGaSe71108.71hexagonalP63a=10.4181 c=6.3743 Z=2599.166.146 [47]
NaNdGa4Se8orthorhombicFddda 21.015 b 21.045 c 12.709 [69]
Nd3FeGaSe7hexagonalP63a 10.2453 c 6.4076 Z=2582.47 [74]
Nd3CoGaSe7hexagonalP63a=10.2296 c=6.4272582.47 [71]
Nd3NiGaSe7hexagonalP63a=10.2117 c=6.4066578.57 [71]
Nd3CuGaSe71118.70hexagonalP63a=10.3426 c=6.3869 Z=2591.76.279 [47]
Ba2GaNdSe5triclinicP1a 7.29Å b 8.7914Å c 9.47Å, α 103.77° β 102.91° γ 107.72° [62]
SmGa2Se4rhombica=21.34, b=21.60, c=12.74 [75]
Ba2GaSmSe5triclinicP1a 7.3017Å b 8.7635Å c 9.4554Å, α 103.672° β 102.963° γ 107.637° [62]
Gd3FeGaSe7hexagonalP63a 10.0762 c 6.4265 Z=2 [74]
Ba2GaGdSe5triclinicP1a 7.2834Å b 8.7062Å c 9.4079Å, α 103.65° β 103.02° γ 107.52° [62]
Dy3FeGaSe7hexagonalP63a 9.9956Å c 6.398 Z=2 [74]
Ba2GaDySe5triclinicP1a 7.2772Å b 8.6543Å c 9.3792Å, α 103.53° β 103.07° γ 107.43° [62]
Ba2GaErErSe5triclinicP1a 7.2721Å b 8.6258Å c 9.3621Å, α 103.41° β 103.13° γ 107.39° [62]
Ba2GaTbSe5triclinicP1a 7.309 b 8.719 c 9.433, α 103.548° β 103.039° γ 107.520° [73]
Ba2GaHoSe5triclinicP1a 7.2964 b 8.670 c 9.406, α 103.482° β 103.049° γ 107.423° [73]
Ba2GaTmSe5triclinicP1a 7.2884 b 8.6376 c 9.3823, α 103.429° β 103.075° γ 107.360° [73]
Ba2GaYbSe5triclinicP1a 7.2864 b 8.6257 c 9.3716, α 103.4154° β 103.0369° γ 107.3396° [73]
Ba2GaLuSe5triclinicP1a 7.2829 b 8.6120 c 9.368, α 103.362° β 103.051° γ 107.308° [73]
HgGa2Se4 [76]
KHg4Ga5Se122137.58trigonalR3a 14.3203 b 14.3203 c 9.7057 Z=31723.76.178band gap 1.61 eV; SHG=20×AgGaS2 [32] [77] [78]
TlGaSe2432.01monoclinicC2/ca=10.760 b=10.762 c=15.626 β=100.19 Z=161780.86.445black; layers of supertetrahedra; mp 804 °C; band gap 1.87 eV [79]
TlGaGeSe4662.52orthorhombicPnmaa=17.4742 b=7.4105 c=11.9406 Z=81546.225.692 [24]
Tl2Ga2GeSe6tetragonalI4/mmca=8.0770 c=6.2572 Z=4 [80]
Tl0.8Ga0.8Ge1.2Se4-mC112622.22monoclinicC2/ca=13.5831 b=7.4015 c=30.7410 β =96.066 Z=163073.35.379red [24]
TlGaSnSe4-mP56701.04monoclinicP21/ca=7.501 b=12.175 c=18.203 β =97.164 Z=81649.45.646red [24]
TlGaSnSe4-cP84708.62cubicPa3a=13.4755 Z=122447.05.770red [24]
Tl2Ga2SnSe6tetragonalI4/mmca=8.095 c=6.402 Z=4 [80]
TlGaSn2Se6R3a=10.3289 c=9.4340871.645.6301dark grey in bulk; maroon powder [81]
PbGa2Se4662.47orthorhombicFddda =12.73 b=21.26 c=21.55 Z=3258306.036yellow to red; mp 780 °C; band gap 1.83 eV [82] [83]
Pb0.72Mn2.84Ga2.95Se8hexagonalP6a 17.550 c 3.8916 [84]
PbGa2GeSe6orthorhombicFdd2mp 720 °C biaxial (−) [61]
Pb4Ga4GeSe12tetragonalP421ca = 13.064 c = 6.310 Z=2 [85]
Ba2GaBiSe5orthorhombicPnmaa=12.691 b=9.190 c=9.245 Z=41078.25.841yellow [86]

Related Research Articles

<span class="mw-page-title-main">Thiosilicate</span> Inorganic silicon compound

In chemistry and materials science, thiosilicate refers to materials containing anions of the formula [SiS2+n]2n. Derivatives where some sulfide is replaced by oxide are also called thiosilicates, examples being materials derived from the oxohexathiodisilicate [Si2OS6]6−. Silicon is tetrahedral in all thiosilicates and sulfur is bridging or terminal. Formally such materials are derived from silicon disulfide in analogy to the relationship between silicon dioxide and silicates. Thiosilicates are typically encountered as colorless solids. They are characteristically sensitive to hydrolysis. They are from the class of chalcogenidotetrelates.

Fluorooxoborate is one of a series of anions or salts that contain boron linked to both oxygen and fluorine. Several structures are possible, rings, or chains. They contain [BOxF4−x](x+1)− units BOF32− BO2F23−, or BO3F14−. In addition there can be borate BO3 triangles and BO4 tetrahedrons. These can then be linked by sharing oxygen atoms, and when they do that, the negative charge is reduced. They are distinct from the fluoroborates in which fluorine is bonded to the metals rather than the boron atoms. For example, KBBF, KBe2BO3F2 is a fluoroborate and has more fluorine and oxygen than can be accommodated by the boron atom.

The borate fluorides or fluoroborates are compounds containing borate or complex borate ions along with fluoride ions that form salts with cations such as metals. They are in the broader category of mixed anion compounds. They are not to be confused with tetrafluoroborates (BF4) or the fluorooxoborates which have fluorine bonded to boron.

The iodate fluorides are chemical compounds which contain both iodate and fluoride anions (IO3 and F). In these compounds fluorine is not bound to iodine as it is in fluoroiodates.

The sulfate fluorides are double salts that contain both sulfate and fluoride anions. They are in the class of mixed anion compounds. Some of these minerals are deposited in fumaroles.

A selenite fluoride is a chemical compound or salt that contains fluoride and selenite anions. These are mixed anion compounds. Some have third anions, including nitrate, molybdate, oxalate, selenate, silicate and tellurate.

Borate sulfides are chemical mixed anion compounds that contain any kind of borate and sulfide ions. They are distinct from thioborates in which sulfur atoms replace oxygen in borates. There are also analogous borate selenides, with selenium ions instead of sulfur.

The borate chlorides are chemical compounds that contain both borate ions and chloride ions. They are mixed anion compounds. Many of them are minerals. Those minerals that crystallise with water (hydrates) may be found in evaporite deposits formed when mineral water has dried out.

The borate bromides are mixed anion compounds that contain borate and bromide anions. They are in the borate halide family of compounds which also includes borate fluorides, borate chlorides, and borate iodides.

Selenide borates, officially known as borate selenides, are chemical mixed anion compounds that contain any kind of borate and selenide ions. They are distinct from selenoborates in which selenium atoms replace oxygen in borates. There are also analogous borate sulfides, with sulfur ions instead of selenium.

Sulfidostannates, or thiostannates are chemical compounds containing anions composed of tin linked with sulfur. They can be considered as stannates with sulfur substituting for oxygen. Related compounds include the thiosilicates, and thiogermanates, and by varying the chalcogen: selenostannates, and tellurostannates. Oxothiostannates have oxygen in addition to sulfur. Thiostannates can be classed as chalcogenidometalates, thiometallates, chalcogenidotetrelates, thiotetrelates, and chalcogenidostannates. Tin is almost always in the +4 oxidation state in thiostannates, although a couple of mixed sulfides in the +2 state are known,

Arsenidosilicates are chemical compounds that contain anions with arsenic bonded to silicon. They are in the category of tetrelarsenides, pnictidosilicates, or tetrelpnictides. They can be classed as Zintl phases or intermetallics. They are analogous to the nitridosilicates, phosphidosilicates, arsenidogermanates, and arsenidostannates. They are distinct from arsenate silicates which have oxygen connected with arsenic and silicon, or arsenatosilicates with arsenate groups sharing oxygen with silicate.

Selenidogermanates are compounds with anions with selenium bound to germanium. They are analogous with germanates, thiogermanates, and telluridogermanates.

Sulfidogermanates or thiogermanates are chemical compounds containing anions with sulfur atoms bound to germanium. They are in the class of chalcogenidotetrelates. Related compounds include thiosilicates, thiostannates, selenidogermanates, telluridogermanates and selenidostannates.

Iodate nitrates are mixed anion compounds that contain both iodate and nitrate anions.

Selenidostannates are chemical compounds which contain anionic units of selenium connected to tin. They can be considered as stannates where selenium substitutes for oxygen. Similar compounds include the selenogermanates and thiostannates. They are in the category of chalcogenidotetrelates or more broadly chalcogenometallates.

Tellurogermanates or telluridogermanates are compounds with anions with tellurium bound to germanium. They are analogous with germanates, thiogermanates and selenidogermanates.

<span class="mw-page-title-main">Strontium selenide</span> Chemical compound

Strontium selenide is an inorganic compound with the chemical formula SrSe.

A fluorooxoiodate or fluoroiodate is a chemical compound or ion derived from iodate, by substituting some of the oxygen by fluorine. They have iodine in the +5 oxidation state. The iodine atoms have a stereochemically active lone-pair of electrons. Many are non-centrosymmetric, and are second harmonic generators (SHG) of intense light shining through them. They are under investigation as materials for non-linear optics, such as for generating ultraviolet light from visible or infrared lasers.

When values of birefingence are very high, the property is termed giant birefringence which more generically is called giant optical anisotropy. Values for giant birefringence exceed 0.3. Much bigger numbers are termed "colossal birefringence". These are achieved using nanostructures.

References

  1. 1 2 3 Friedrich, Daniel; Schlosser, Marc; Pfitzner, Arno (2017-11-17). "Synthesis and Structural Characterization of the layered Selenogallate RbGaSe 2: Synthesis and Structural Characterization of the layered Selenogallate RbGaSe 2". Zeitschrift für anorganische und allgemeine Chemie. 643 (21): 1589–1592. doi: 10.1002/zaac.201700288 .
  2. Friedrich, Daniel; Schlosser, Marc; Näther, Christian; Pfitzner, Arno (7 May 2018). "In Situ X-ray Diffraction Study of the Thermal Decomposition of Selenogallates Cs 2 [Ga 2 (Se 2 ) 2– x Se 2+ x ] ( x = 0, 1, 2)". Inorganic Chemistry. 57 (9): 5292–5298. doi:10.1021/acs.inorgchem.8b00324. PMID   29667827.
  3. Luque, Antonio; Hegedus, Steven (2011-03-29). Handbook of Photovoltaic Science and Engineering. John Wiley & Sons. ISBN   978-0-470-97612-8.
  4. 1 2 Peng, Jing; Liu, Xinyao; Wang, Jie; Zhang, Shaoqing; Xiao, Xiao; Xiong, Zhengbin; Zhang, Kuibao; Chen, Baojun; He, Zhiyu; Huang, Wei (2023-07-31). "Crystal Growth, Characterization, and Properties of Nonlinear Optical Crystals of Li x Ag 1– x GaSe 2 for Mid-Infrared Applications". Inorganic Chemistry. 62 (30): 12067–12078. doi:10.1021/acs.inorgchem.3c01582. ISSN   0020-1669. PMID   37475677. S2CID   259995617.
  5. 1 2 3 4 Zhou, Jian; Zhang, Yong; Bian, Guo-Qing; Li, Chun-Yin; Chen, Xiao-Xia; Dai, Jie (2008-07-02). "Structural Study of Organic−Inorganic Hybrid Thiogallates and Selenidogallates in View of Effects of the Chelate Amines". Crystal Growth & Design. 8 (7): 2235–2240. doi:10.1021/cg700821n. ISSN   1528-7483.
  6. 1 2 3 Zhou, Jian; Li, Chun-Ying; Zhang, Yong; Dai, Jie (2009-04-10). "Three 1-D selenidogallates [GaSe 2 − ] n , displaying conformational variations". Journal of Coordination Chemistry. 62 (7): 1112–1120. doi:10.1080/00958970802468617. ISSN   0095-8972. S2CID   96560482.
  7. 1 2 Xu, Chao; Zhang, Jing-Jing; Duan, Taike; Chen, Qun; Zhang, Qian-Feng (2011-09-01). "Solvothermal Syntheses and Crystal Structures of New One-dimensional Selenogallates [bappH 2 ][Ga 2 Se 4 ] (bapp = 1,4-Bis-(3-aminopropyl)piperazine) and [Mn(en) 3 ][Ga 2 Se 5 ] (en = Ethylenediamine)". Zeitschrift für Naturforschung B. 66 (9): 877–881. doi: 10.1515/znb-2011-0902 . ISSN   1865-7117. S2CID   51747460.
  8. 1 2 3 4 5 Xiong, Wei-Wei; Li, Jian-Rong; Feng, Mei-Ling; Huang, Xiao-Ying (2011). "Solvothermal syntheses, crystal structures, and characterizations of a series of one-dimensional organic-containing gallium polyselenides". CrystEngComm. 13 (20): 6206. doi:10.1039/c1ce05507k. ISSN   1466-8033.
  9. Fehlker, Andreas; Blachnik, Roger; Reuter, Hans (1999). "[Ga(en)3][Ga3Se7(en)] · H2O: Ein Galliumchalkogenid mit Ketten aus [Ga3Se6Se2/2(en)]3–-Bicyclen". Zeitschrift für anorganische und allgemeine Chemie (in German). 625 (7): 1225–1228. doi:10.1002/(SICI)1521-3749(199907)625:7<1225::AID-ZAAC1225>3.0.CO;2-H. ISSN   1521-3749.
  10. 1 2 Adhikary, Amit; Yaghoobnejad Asl, Hooman; Sandineni, Prashanth; Balijapelly, Srikanth; Mohapatra, Sudip; Khatua, Sajal; Konar, Sanjit; Gerasimchuk, Nikolay; Chernatynskiy, Aleksandr V.; Choudhury, Amitava (2020-07-14). "Unusual Atmospheric Water Trapping and Water Induced Reversible Restacking of 2D Gallium Sulfide Layers in NaGaS 2 Formed by Supertetrahedral Building Unit". Chemistry of Materials. 32 (13): 5589–5603. doi:10.1021/acs.chemmater.0c00836. ISSN   0897-4756. S2CID   225832882.
  11. Xu, Qian-Ting; Han, Shan-Shan; Li, Jia-Nuo; Guo, Sheng-Ping (2022-04-11). "NaGa 3 Se 5 : An Infrared Nonlinear Optical Material with Balanced Performance Contributed by Complex {[Ga 3 Se 5 ] − } ∞ Anionic Network". Inorganic Chemistry. 61 (14): 5479–5483. doi:10.1021/acs.inorgchem.2c00623. ISSN   0020-1669. PMID   35344370. S2CID   247777531.
  12. Feng, Kai; Mei, Dajiang; Bai, Lei; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng (August 2012). "Synthesis, structure, physical properties, and electronic structure of KGaSe2". Solid State Sciences. 14 (8): 1152–1156. Bibcode:2012SSSci..14.1152F. doi:10.1016/j.solidstatesciences.2012.05.028.
  13. Zhou, Yazhou; Xing, Lingyi; Finkelstein, Gregory J.; Gui, Xin; Marshall, Madalynn G.; Dera, Przemyslaw; Jin, Rongying; Xie, Weiwei (2018-11-19). "Cr 2.37 Ga 3 Se 8 : A Quasi-Two-Dimensional Magnetic Semiconductor". Inorganic Chemistry. 57 (22): 14298–14303. doi:10.1021/acs.inorgchem.8b02384. ISSN   0020-1669.
  14. González, J.; Rico, R.; Calderón, E.; Quintero, M.; Morocoima, M. (1999). "Absorption Edge of MnGa2Se4 Single Crystals under Hydrostatic Pressure". Physica Status Solidi B. 211 (1): 45–49. Bibcode:1999PSSBR.211...45G. doi:10.1002/(SICI)1521-3951(199901)211:1<45::AID-PSSB45>3.0.CO;2-8. ISSN   1521-3951.
  15. Abrahams, S. C.; Bernstein, J. L. (August 1974). "Piezoelectric nonlinear optic CuGaSe 2 and CdGeAs 2 : Crystal structure, chalcopyrite microhardness, and sublattice distortion". The Journal of Chemical Physics. 61 (3): 1140–1146. Bibcode:1974JChPh..61.1140A. doi:10.1063/1.1681987. ISSN   0021-9606.
  16. 1 2 Errandonea, D.; Kumar, Ravhi S.; Manjón, F. J.; Ursaki, V. V.; Tiginyanu, I. M. (2008-09-15). "High-pressure x-ray diffraction study on the structure and phase transitions of the defect-stannite ZnGa2Se4 and defect-chalcopyrite CdGa2S4". Journal of Applied Physics. 104 (6): 063524–063524–9. arXiv: 0809.4620 . Bibcode:2008JAP...104f3524E. doi:10.1063/1.2981089. ISSN   0021-8979. S2CID   56222977.
  17. Chen, Ruijiao; Wu, Xiaowen; Su, Zhi (2018). "Structural insights into T 2 -cluster-containing chalcogenides with vertex-, edge- and face-sharing connection modes of NaQ 6 ligands: Na 3 ZnM III Q 4 (M III = In, Ga; Q = S, Se)". Dalton Transactions. 47 (43): 15538–15544. doi:10.1039/C8DT03281E. ISSN   1477-9226. PMID   30345442.
  18. Abudurusuli, Ailijiang; Wu, Kui; Rouzhahong, Yilimiranmu; Yang, Zhihua; Pan, Shilie (2018). "Na 6 Zn 3 MIII2Q 9 (M III = Ga, In; Q = S, Se): four new supertetrahedron-layered chalcogenides with unprecedented vertex-sharing T 3 -clusters and desirable photoluminescence performances". Inorganic Chemistry Frontiers. 5 (6): 1415–1422. doi:10.1039/C8QI00182K. ISSN   2052-1553.
  19. 1 2 3 Chen, Man-Man; Zhou, Sheng-Hua; Wei, Wenbo; Wu, Xin-Tao; Lin, Hua; Zhu, Qi-Long (2021-06-17). "AZn 4 Ga 5 Se 12 (A = K, Rb, or Cs): Infrared Nonlinear Optical Materials with Simultaneous Large Second Harmonic Generation Responses and High Laser-Induced Damage Thresholds". Inorganic Chemistry. 60 (13): 10038–10046. doi:10.1021/acs.inorgchem.1c01359. PMID   34134479. S2CID   235460337.
  20. Yelisseyev, Alexander P.; Isaenko, Ludmila I.; Krinitsin, Pavel; Liang, Fei; Goloshumova, Alina A.; Naumov, Dmitry Yu.; Lin, Zheshuai (2016-09-06). "Crystal Growth, Structure, and Optical Properties of LiGaGe 2 Se 6". Inorganic Chemistry. 55 (17): 8672–8680. doi:10.1021/acs.inorgchem.6b01225. ISSN   0020-1669. PMID   27529433.
  21. Mei, Dajiang; Yin, Wenlong; Feng, Kai; Lin, Zheshuai; Bai, Lei; Yao, Jiyong; Wu, Yicheng (2012-01-16). "LiGaGe 2 Se 6 : A New IR Nonlinear Optical Material with Low Melting Point". Inorganic Chemistry. 51 (2): 1035–1040. doi:10.1021/ic202202j. ISSN   0020-1669. PMID   22221169.
  22. Isaenko, L.I.; Yelisseyev, A.P.; Lobanov, S.I.; Krinitsin, P.G.; Molokeev, M.S. (September 2015). "Structure and optical properties of Li2Ga2GeS6 nonlinear crystal". Optical Materials. 47: 413–419. Bibcode:2015OptMa..47..413I. doi:10.1016/j.optmat.2015.06.014.
  23. Li, Xiaoshuang; Li, Chao; Gong, Pifu; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng (2016). "Syntheses, crystal structures and physical properties of three new chalcogenides: NaGaGe 3 Se 8 , K 3 Ga 3 Ge 7 S 20 , and K 3 Ga 3 Ge 7 Se 20". Dalton Transactions. 45 (2): 532–538. doi:10.1039/C5DT03682H. ISSN   1477-9226. PMID   26599138.
  24. 1 2 3 4 5 6 7 8 9 Friedrich, Daniel; Byun, Hye Ryung; Hao, Shiqiang; Patel, Shane; Wolverton, Chris; Jang, Joon Ik; Kanatzidis, Mercouri G. (2020-10-14). "Layered and Cubic Semiconductors A Ga M ′ Q 4 ( A + = K + , Rb + , Cs + , Tl + ; M ′ 4+ = Ge 4+ , Sn 4+ ; Q 2– = S 2– , Se 2– ) and High Third-Harmonic Generation". Journal of the American Chemical Society. 142 (41): 17730–17742. doi:10.1021/jacs.0c08638. ISSN   0002-7863. PMID   32933252. S2CID   221748402.
  25. 1 2 3 4 Larsen, Jes K.; Donzel-Gargand, Olivier; Sopiha, Kostiantyn V.; Keller, Jan; Lindgren, Kristina; Platzer-Björkman, Charlotte; Edoff, Marika (2021-02-22). "Investigation of AgGaSe 2 as a Wide Gap Solar Cell Absorber". ACS Applied Energy Materials. 4 (2): 1805–1814. doi:10.1021/acsaem.0c02909. ISSN   2574-0962. S2CID   234068019.
  26. Li, Jun; Li, Jia-Nuo; Hu, Li-Yun; Ni, Jun-Jie; Yao, Wen-Dong; Zhou, Wenfeng; Liu, Wenlong; Guo, Sheng-Ping (2024-03-22). "Polysubstitution Induced Centrosymmetric-to-Noncentrosymmetric Structural Transformation and Nonlinear-Optical Behavior: The Case of Na 0.45 Ag 0.55 Ga 3 Se 5". Inorganic Chemistry. doi:10.1021/acs.inorgchem.4c00785. ISSN   0020-1669.
  27. Li, Jia-Nuo; Yao, Wen-Dong; Li, Xiao-Hui; Liu, Wenlong; Xue, Huai-Guo; Guo, Sheng-Ping (2021). "A novel promising infrared nonlinear optical selenide KAg 3 Ga 8 Se 14 designed from benchmark AgGaQ 2 (Q = S, Se)". Chemical Communications. 57 (9): 1109–1112. doi:10.1039/D0CC07396B. ISSN   1359-7345. PMID   33410852. S2CID   230546711.
  28. Ni, Youbao; Hu, Qianqian; Wu, Haixin; Han, Weimin; Yu, Xuezhou; Mao, Mingsheng (2021-06-10). "The Investigation on Mid-Far Infrared Nonlinear Crystal AgGaGe5Se12 (AGGSe)". Crystals. 11 (6): 661. doi: 10.3390/cryst11060661 . ISSN   2073-4352.
  29. Kim, Chang-Dae; Cho, Tong-San; Kim, Jae-Kuen; Kim, Wha-Tek; Park, Hong-Lee (1987-12-15). "Spin-orbit coupling effects in CdGa 2 Se 4 : Co 2 + single crystals". Physical Review B. 36 (17): 9283–9285. Bibcode:1987PhRvB..36.9283K. doi:10.1103/PhysRevB.36.9283. ISSN   0163-1829. PMID   9942799.
  30. 1 2 3 Grzechnik, A.; Ursaki, V.V.; Syassen, K.; Loa, I.; Tiginyanu, I.M.; Hanfland, M. (August 2001). "Pressure-Induced Phase Transitions in Cadmium Thiogallate CdGa2Se4". Journal of Solid State Chemistry. 160 (1): 205–211. Bibcode:2001JSSCh.160..205G. doi:10.1006/jssc.2001.9224.
  31. 1 2 3 Lin, Hua; Chen, Ling; Zhou, Liu-Jiang; Wu, Li-Ming (2013-08-28). "Functionalization Based on the Substitutional Flexibility: Strong Middle IR Nonlinear Optical Selenides AX II 4 X III 5 Se 12". Journal of the American Chemical Society. 135 (34): 12914–12921. doi:10.1021/ja4074084. ISSN   0002-7863. PMID   23902474.
  32. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Abudurusuli, Ailijiang; Li, Junjie; Tong, Tinghao; Yang, Zhihua; Pan, Shilie (2020-04-20). "LiBa 4 Ga 5 Q 12 (Q = S, Se): Noncentrosymmetric Metal Chalcogenides with a Cesium Chloride Topological Structure Displaying a Remarkable Laser Damage Threshold". Inorganic Chemistry. 59 (8): 5674–5682. doi:10.1021/acs.inorgchem.0c00431. ISSN   0020-1669. PMID   32248682. S2CID   214811024.
  33. Deiseroth, H.-J.; Müller, D.; Hahn, H. (June 1985). "Strukturuntersuchungen an InGaSe2 und InGaTe2". Zeitschrift für anorganische und allgemeine Chemie (in German). 525 (6): 163–172. doi:10.1002/zaac.19855250619. ISSN   0044-2313.
  34. Luo, Zhong-Zhen; Lin, Chen-Sheng; Cui, Hong-Hua; Zhang, Wei-Long; Zhang, Hao; He, Zhang-Zhen; Cheng, Wen-Dan (2014-04-22). "SHG Materials SnGa 4 Q 7 (Q = S, Se) Appearing with Large Conversion Efficiencies, High Damage Thresholds, and Wide Transparencies in the Mid-Infrared Region". Chemistry of Materials. 26 (8): 2743–2749. doi:10.1021/cm5006955. ISSN   0897-4756.
  35. Lin, Hua; Chen, Hong; Zheng, Yu-Jun; Yu, Ju-Song; Wu, Xin-Tao; Wu, Li-Ming (2017). "Two excellent phase-matchable infrared nonlinear optical materials based on 3D diamond-like frameworks: RbGaSn 2 Se 6 and RbInSn 2 Se 6". Dalton Transactions. 46 (24): 7714–7721. doi: 10.1039/C7DT01384A . ISSN   1477-9226. PMID   28537606.
  36. 1 2 Friedrich, Daniel; Schlosser, Marc; Pfitzner, Arno (2016-07-06). "Synthesis, Crystal Structure, and Physical Properties of Two Polymorphs of CsGaSe 2 , and High-Temperature X-ray Diffraction Study of the Phase Transition Kinetics". Crystal Growth & Design. 16 (7): 3983–3992. doi:10.1021/acs.cgd.6b00532. ISSN   1528-7483.
  37. Do, Junghwan; Kanatzidis, Mercouri G. (April 2003). "The One-dimensional Polyselenide Compound CsGaSe3". Zeitschrift für anorganische und allgemeine Chemie (in German). 629 (4): 621–624. doi:10.1002/zaac.200390105. ISSN   0044-2313.
  38. Friedrich, Daniel; Schlosser, Marc; Pfitzner, Arno (April 2014). "Synthesis and Structural Characterization of Cs 2 Ga 2 Se 5: Synthesis and Structural Characterization of Cs 2 Ga 2 Se 5" (PDF). Zeitschrift für anorganische und allgemeine Chemie. 640 (5): 826–829. doi:10.1002/zaac.201400046.
  39. Friedrich, Daniel; Greim, Dominik; Schlosser, Marc; Siegel, Renée; Senker, Jürgen; Pfitzner, Arno (2018-12-03). "Synthese und Charakterisierung von Cs 4 Ga 6 Q 11 ( Q =S, Se) – Chalkogenogallate mit außergewöhnlichen polymeren Anionen". Angewandte Chemie. 130 (49): 16442–16447. Bibcode:2018AngCh.13016442F. doi:10.1002/ange.201805239. ISSN   0044-8249. S2CID   105570704.
  40. Deiseroth, Hans-Jörg; Fu-Son, Han (1983-02-01). "Cs 6 Ga 2 Se 6 , ein ternäres Selenogallat(III) mit isolierten [Ga 2 Se 6 ] 6- -Ionen/Cs 6 Ga 2 Se 6 , a Ternary Selenogallate(III) with Isolated [Ga 2 Se 6 ] 6- Ions". Zeitschrift für Naturforschung B. 38 (2): 181–182. doi: 10.1515/znb-1983-0212 . ISSN   1865-7117. S2CID   96891752.
  41. 1 2 Deiseroth, H. J. (1984-08-01). "Ungewöhnliche lineare, oligomere Anionen [Ga n Se 2n+2 ] (n + 4) - (n =2,4,6) in festen Selenogallaten des Cäsiums". Zeitschrift für Kristallographie - Crystalline Materials. 166 (1–4): 283–296. doi:10.1524/zkri.1984.166.14.283. ISSN   2196-7105. S2CID   93996138.
  42. Lin, Hua; Chen, Hong; Lin, Zi-Xiong; Zhao, Hua-Jun; Liu, Peng-Fei; Yu, Ju-Song; Chen, Ling (February 2016). "(Cs 6 Cl) 6 Cs 3 [Ga 53 Se 96 ]: A Unique Long Period-Stacking Structure of Layers Made from Ga 2 Se 6 Dimers via Cis or Trans Intralayer Linking". Inorganic Chemistry. 55 (3): 1014–1016. doi:10.1021/acs.inorgchem.5b02846. ISSN   0020-1669. PMID   26792549.
  43. Ma, Ni; Xiong, Lin; Chen, Ling; Wu, Li-Ming (December 2019). "Vibration uncoupling of germanium with different valence states lowers thermal conductivity of Cs2Ge3Ga6Se14". Science China Materials. 62 (12): 1788–1797. doi: 10.1007/s40843-019-1192-y . ISSN   2095-8226. S2CID   204962439.
  44. Mei, Dajiang; Yin, Wenlong; Feng, Kai; Bai, Lei; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng (February 2012). "Synthesis, structure, and electronic structure of CsAgGa2Se4". Journal of Solid State Chemistry. 186: 54–57. Bibcode:2012JSSCh.186...54M. doi:10.1016/j.jssc.2011.11.014.
  45. Zhai, Naixia; Li, Chao; Xu, Bo; Bai, Lei; Yao, Jiyong; Zhang, Guochun; Hu, Zhanggui; Wu, Yicheng (2017-02-23). "Temperature-Dependent Sellmeier Equations of IR Nonlinear Optical Crystal BaGa4Se7". Crystals. 7 (3): 62. doi: 10.3390/cryst7030062 . ISSN   2073-4352.
  46. Yao, Jiyong; Mei, Dajiang; Bai, Lei; Lin, Zheshuai; Yin, Wenlong; Fu, Peizhen; Wu, Yicheng (2010-10-18). "BaGa 4 Se 7 : A New Congruent-Melting IR Nonlinear Optical Material". Inorganic Chemistry. 49 (20): 9212–9216. doi:10.1021/ic1006742. ISSN   0020-1669. PMID   20863100.
  47. 1 2 3 4 5 6 7 8 9 Iyer, Abishek K (2018). "Structural diversity and optical properties of ternary and quaternary chalcogenides". doi:10.7939/R33N20W55.{{cite journal}}: Cite journal requires |journal= (help)
  48. Yin, Wenlong; Iyer, Abishek K.; Lin, Xinsong; Mar, Arthur (May 2016). "Ba4Ga2Se8: A ternary selenide containing chains and discrete S e 2 2 − units". Journal of Solid State Chemistry. 237: 144–149. Bibcode:2016JSSCh.237..144Y. doi:10.1016/j.jssc.2016.02.014.
  49. Mei, Dajiang; Yin, Wenlong; Lin, Zheshuai; He, Ran; Yao, Jiyong; Fu, Peizhen; Wu, Yicheng (February 2011). "Syntheses and characterization of two new selenides Ba5Al2Se8 and Ba5Ga2Se8". Journal of Alloys and Compounds. 509 (6): 2981–2985. doi:10.1016/j.jallcom.2010.11.178.
  50. Yin, Wenlong; Mei, Dajiang; Feng, Kai; Yao, Jiyong; Fu, Peizhen; Wu, Yicheng (2011). "Ba5Ga4Se10: a new selenidogallate containing the novel [Ga4Se10]10− anionic cluster with Ga in a mixed-valence state". Dalton Transactions. 40 (36): 9159–9162. doi:10.1039/c1dt10748h. ISSN   1477-9226. PMID   21822514.
  51. Feng, Kai; Yin, Wenlong; Lin, Zuohong; Yao, Jiyong; Wu, Yicheng (2013-10-07). "Five New Chalcohalides, Ba 3 GaS 4 X (X = Cl, Br), Ba 3 MSe 4 Cl (M = Ga, In), and Ba 7 In 2 Se 6 F 8 : Syntheses, Crystal Structures, and Optical Properties". Inorganic Chemistry. 52 (19): 11503–11508. doi:10.1021/ic401820a. ISSN   0020-1669. PMID   24024885.
  52. Yin, Wenlong; Iyer, Abishek K.; Xing, Wenhao; Kang, Bin; Mar, Arthur (April 2020). "Quaternary chalcogenide halides Ba3GaSe4Br and Ba3InSe4Br". Journal of Solid State Chemistry. 284: 121189. Bibcode:2020JSSCh.28421189Y. doi:10.1016/j.jssc.2020.121189. S2CID   213719661.
  53. 1 2 Yin, Wenlong; Feng, Kai; Mei, Dajiang; Yao, Jiyong; Fu, Peizhen; Wu, Yicheng (2012). "Ba2AgInS4 and Ba4MGa5Se12 (M = Ag, Li): syntheses, structures, and optical properties". Dalton Transactions. 41 (8): 2272–2276. doi:10.1039/c2dt11895e. ISSN   1477-9226. PMID   22214992.
  54. Abudurusuli, Ailijiang; Wu, Kui; Rouzhahong, Yilimiranmu; Yang, Zhihua; Pan, Shilie (2018). "NaBaM III Q 3 (M III = Al, Ga; Q = S, Se): first quaternary chalcogenides with isolated edge-sharing (MIII2Q 6 ) 6− dimers". Dalton Transactions. 47 (45): 16044–16047. doi:10.1039/C8DT04048F. ISSN   1477-9226. PMID   30393800.
  55. Li, Ya-Nan; Xue, Huaiguo; Guo, Sheng-Ping (2020-03-16). "(Na 0.60 Ba 0.70 )Ga 2 Se 4 : An Infrared Nonlinear Optical Crystal Designed using AgGaSe 2 as the Template". Inorganic Chemistry. 59 (6): 3546–3550. doi:10.1021/acs.inorgchem.0c00196. ISSN   0020-1669. PMID   32125150. S2CID   211833495.
  56. 1 2 3 Yu, Peng; Zhou, Liu-Jiang; Chen, Ling (February 2012). "Noncentrosymmetric Inorganic Open-Framework Chalcohalides with Strong Middle IR SHG and Red Emission: Ba 3 AGa 5 Se 10 Cl 2 (A = Cs, Rb, K)". Journal of the American Chemical Society. 134 (4): 2227–2235. doi:10.1021/ja209711x. ISSN   0002-7863. PMID   22239154.
  57. 1 2 3 4 5 6 Li, Yan-Yan; Liu, Peng-Fei; Hu, Lei; Chen, Ling; Lin, Hua; Zhou, Liu-Jiang; Wu, Li-Ming (July 2015). "Strong IR NLO Material Ba 4 MGa 4 Se 10 Cl 2 : Highly Improved Laser Damage Threshold via Dual Ion Substitution Synergy". Advanced Optical Materials. 3 (7): 957–966. doi:10.1002/adom.201500038. S2CID   94065731.
  58. Kuo, Shu-Ming; Chang, Yu-Ming; Chung, In; Jang, Joon-Ik; Her, Bo-Hsian; Yang, Siao-Han; Ketterson, John B.; Kanatzidis, Mercouri G.; Hsu, Kuei-Fang (2013-06-25). "New Metal Chalcogenides Ba 4 CuGa 5 Q 12 (Q = S, Se) Displaying Strong Infrared Nonlinear Optical Response". Chemistry of Materials. 25 (12): 2427–2433. doi:10.1021/cm400311v. ISSN   0897-4756.
  59. Li, Yan-Yan; Wang, Hui; Sun, Bo-Wen; Ruan, Qin-Qin; Geng, Yan-Ling; Liu, Peng-Fei; Wang, Lei; Wu, Li-Ming (2019-02-06). "Ba 10 Zn 7 M 6 Q 26 : Two New Mid-infrared Nonlinear Optical Crystals with T2 Supertetrahedron 3D Framework". Crystal Growth & Design. 19 (2): 1190–1197. doi:10.1021/acs.cgd.8b01644. ISSN   1528-7483. S2CID   104303095.
  60. Yin, Wenlong; Iyer, Abishek K.; Li, Chao; Lin, Xinsong; Yao, Jiyong; Mar, Arthur (September 2016). "Noncentrosymmetric selenide Ba4Ga4GeSe12: Synthesis, structure, and optical properties". Journal of Solid State Chemistry. 241: 131–136. Bibcode:2016JSSCh.241..131Y. doi:10.1016/j.jssc.2016.06.004.
  61. 1 2 Badikov, Valeriy V.; Badikov, Dmitrii V.; Wang, Li; Shevyrdyaeva, Galina S.; Panyutin, Vladimir L.; Fintisova, Anna A.; Sheina, Svetlana G.; Petrov, Valentin (2019-08-07). "Crystal Growth and Characterization of a New Quaternary Chalcogenide Nonlinear Crystal for the Mid-Infrared: PbGa 2 GeSe 6". Crystal Growth & Design. 19 (8): 4224–4228. doi:10.1021/acs.cgd.9b00118. ISSN   1528-7483. S2CID   198354895.
  62. 1 2 3 4 5 6 Yin, Wenlong; Feng, Kai; Wang, Wendong; Shi, Youguo; Hao, Wenyu; Yao, Jiyong; Wu, Yicheng (2012-06-18). "Syntheses, Structures, Optical and Magnetic Properties of Ba 2 M Ln Se 5 (M = Ga, In; Ln = Y, Nd, Sm, Gd, Dy, Er)". Inorganic Chemistry. 51 (12): 6860–6867. doi:10.1021/ic300604a. ISSN   0020-1669. PMID   22671989.
  63. Lei, Xiao-Wu; Yang, Min; Xia, Sheng-Qing; Liu, Xiao-Cun; Pan, Ming-Yan; Li, Xin; Tao, Xu-Tang (April 2014). "Synthesis, Structure and Bonding, Optical Properties of Ba 4 MTrQ 6 (M=Cu, Ag; Tr=Ga, In; Q=S, Se)". Chemistry: An Asian Journal. 9 (4): 1123–1131. doi:10.1002/asia.201301495. PMID   24519897.
  64. Yin, Wenlong; He, Ran; Feng, Kai; Hao, Wenyu; Yao, Jiyong; Wu, Yicheng (July 2013). "Synthesis, structure, optical property, and electronic structure of Ba7AgGa5Se15". Journal of Alloys and Compounds. 565: 115–119. doi:10.1016/j.jallcom.2013.02.180.
  65. Yin, Wenlong; Iyer, Abishek K.; Li, Chao; Yao, Jiyong; Mar, Arthur (2017). "Ba 5 CdGa 6 Se 15 , a congruently-melting infrared nonlinear optical material with strong SHG response". Journal of Materials Chemistry C. 5 (5): 1057–1063. doi:10.1039/C6TC05111A. ISSN   2050-7526.
  66. Li, Xiaoshuang; Li, Chao; Gong, Pifu; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng (2015). "BaGa 2 SnSe 6 : a new phase-matchable IR nonlinear optical material with strong second harmonic generation response". Journal of Materials Chemistry C. 3 (42): 10998–11004. doi:10.1039/C5TC02337H. ISSN   2050-7526.
  67. 1 2 Yin, Wenlong; Lin, Zuohong; Kang, Lei; Kang, Bin; Deng, Jianguo; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng (2015). "Syntheses, structures, and optical properties of Ba 4 Ga 4 SnSe 12 and Ba 6 Ga 2 SnSe 11". Dalton Transactions. 44 (5): 2259–2266. doi:10.1039/C4DT02244K. ISSN   1477-9226. PMID   25523931.
  68. Li, Chao; Li, Xiaoshuang; Huang, Hongwei; Yao, Jiyong; Wu, Yicheng (2015-10-19). "Ba 2 AsGaSe 5 : A New Quaternary Selenide with the Novel [AsGaSe 5 ] 4– Cluster and Interesting Photocatalytic Properties". Inorganic Chemistry. 54 (20): 9785–9789. doi:10.1021/acs.inorgchem.5b01501. ISSN   0020-1669. PMID   26418301.
  69. 1 2 3 Choudhury, Amitava; Dorhout, Peter K. (2008-05-01). "Synthesis, Structure, and Optical Properties of the Quaternary Seleno-gallates Na Ln Ga 4 Se 8 ( Ln = La, Ce, Nd) and Their Comparison with the Isostructural Thio-gallates". Inorganic Chemistry. 47 (9): 3603–3609. doi:10.1021/ic701986j. ISSN   0020-1669. PMID   18345598.
  70. He, Jianqiao; Wang, Zhe; Zhang, Xian; Cheng, Ye; Gong, Yu; Lai, Xiaofang; Zheng, Chong; Lin, Jianhua; Huang, Fuqiang (2015). "Synthesis, structure, magnetic and photoelectric properties of Ln 3 M 0.5 M′Se 7 (Ln = La, Ce, Sm; M = Fe, Mn; M′ = Si, Ge) and La 3 MnGaSe 7". RSC Advances. 5 (65): 52629–52635. Bibcode:2015RSCAd...552629H. doi:10.1039/C5RA05629B. ISSN   2046-2069.
  71. 1 2 3 4 5 Rudyk, Brent W.; Stoyko, Stanislav S.; Oliynyk, Anton O.; Mar, Arthur (February 2014). "Rare-earth transition-metal gallium chalcogenides RE3MGaCh7 (M=Fe, Co, Ni; Ch=S, Se)". Journal of Solid State Chemistry. 210 (1): 79–88. Bibcode:2014JSSCh.210...79R. doi:10.1016/j.jssc.2013.11.003.
  72. Iyer, Abishek K.; Yin, Wenlong; Rudyk, Brent W.; Lin, Xinsong; Nilges, Tom; Mar, Arthur (November 2016). "Metal ion displacements in noncentrosymmetric chalcogenides La3Ga1.67S7, La3Ag0.6GaCh7 (Ch=S, Se), and La3MGaSe7 (M=Zn, Cd)". Journal of Solid State Chemistry. 243: 221–231. Bibcode:2016JSSCh.243..221I. doi:10.1016/j.jssc.2016.08.031.
  73. 1 2 3 4 5 6 7 Yin, Wenlong; Zhang, Dong; Zhou, Molin; Iyer, Abishek K.; Pöhls, Jan-Hendrik; Yao, Jiyong; Mar, Arthur (September 2018). "Quaternary rare-earth selenides Ba2REGaSe5 and Ba2REInSe5". Journal of Solid State Chemistry. 265: 167–175. Bibcode:2018JSSCh.265..167Y. doi:10.1016/j.jssc.2018.05.041. S2CID   103520080.
  74. 1 2 3 Yin, Wenlong; Wang, Wendong; Kang, Lei; Lin, Zheshuai; Feng, Kai; Shi, Youguo; Hao, Wenyu; Yao, Jiyong; Wu, Yicheng (June 2013). "Ln3FeGaQ7: A new series of transition-metal rare-earth chalcogenides". Journal of Solid State Chemistry. 202: 269–275. Bibcode:2013JSSCh.202..269Y. doi:10.1016/j.jssc.2013.03.029.
  75. Alieva, O. A.; Aliev, O. M.; Rustamov, P. G. (1987). "SmSe-Ga2Se3 system". Zhurnal Neorganicheskoj Khimii (in Russian). 32 (1): 252–254. ISSN   0044-457X.
  76. Gomis, O.; Vilaplana, R.; Manjón, F. J.; Santamaría-Pérez, D.; Errandonea, D.; Pérez-González, E.; López-Solano, J.; Rodríguez-Hernández, P.; Muñoz, A.; Tiginyanu, I. M.; Ursaki, V. V. (2013-02-21). "High-pressure study of the structural and elastic properties of defect-chalcopyrite HgGa 2 Se 4". Journal of Applied Physics. 113 (7): 073510–073510–10. Bibcode:2013JAP...113g3510G. doi:10.1063/1.4792495. hdl: 10251/35871 . ISSN   0021-8979.
  77. Zhou, Molin; Yang, Yi; Guo, Yangwu; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng; Chen, Chuangtian (2017-09-26). "Hg-Based Infrared Nonlinear Optical Material KHg 4 Ga 5 Se 12 Exhibits Good Phase-Matchability and Exceptional Second Harmonic Generation Response". Chemistry of Materials. 29 (18): 7993–8002. doi:10.1021/acs.chemmater.7b03143. ISSN   0897-4756.
  78. Johnsen, Simon; Liu, Zhifu; Peters, John A.; Song, Jung-Hwan; Peter, Sebastian C.; Malliakas, Christos D.; Cho, Nam Ki; Jin, Hosub; Freeman, Arthur J.; Wessels, Bruce W.; Kanatzidis, Mercouri G. (2011-06-28). "Thallium Chalcogenide-Based Wide-Band-Gap Semiconductors: TlGaSe 2 for Radiation Detectors". Chemistry of Materials. 23 (12): 3120–3128. doi:10.1021/cm200946y. ISSN   0897-4756.
  79. Makhnovets, G.; Myronchuk, G.; Piskach, L.; Parasyuk, O.; Kityk, I.V.; Piasecki, M. (November 2018). "Phase diagram and specific band gap features of novel TlGaSe2: Zn+2(Cd+2, Hg+2) crystals". Journal of Alloys and Compounds. 768: 667–675. doi:10.1016/j.jallcom.2018.07.282. S2CID   105481044.
  80. 1 2 Babizhetskyy, Volodymyr; Levytskyy, Volodymyr; Smetana, Volodymyr; Wilk-Kozubek, Magdalena; Tsisar, Oksana; Piskach, Lyudmyla; Parasyuk, Oleg; Mudring, Anja-Verena (2020-02-25). "New cation-disordered quaternary selenides Tl 2 Ga 2 Tt Se 6 ( Tt =Ge, Sn)". Zeitschrift für Naturforschung B. 75 (1–2): 135–142. doi: 10.1515/znb-2019-0169 . ISSN   1865-7117. S2CID   211229264.
  81. Parasyuk, Oleh; Babizhetskyy, Volodymyr; Khyzhun, Oleg; Levytskyy, Volodymyr; Kityk, Iwan; Myronchuk, Galyna; Tsisar, Oksana; Piskach, Lyudmyla; Jedryka, Jaroslaw; Maciag, Artur; Piasecki, Michal (2017-11-07). "Novel Quaternary TlGaSn2Se6 Single Crystal as Promising Material for Laser Operated Infrared Nonlinear Optical Modulators". Crystals. 7 (11): 341. doi: 10.3390/cryst7110341 . ISSN   2073-4352.
  82. Bletskan, D. I.; Frolov, V. V.; Kabatsii, V. M.; Kranichets, M.; Gule, E. G. (2006). "Photoconductivity and photoluminescence of PbGa2Se4crystals" (PDF). Chalcogenide Letters. 3 (12). ISSN   1584-8663.
  83. Wu, Kui; Pan, Shilie; Wu, Hongping; Yang, Zhihua (February 2015). "Synthesis, structures, optical properties and electronic structures of PbGa2Q4 (Q=S, Se) crystals". Journal of Molecular Structure. 1082: 174–179. Bibcode:2015JMoSt1082..174W. doi:10.1016/j.molstruc.2014.11.019.
  84. Zhou, Molin; Jiang, Xingxing; Guo, Yangwu; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng (2017-07-17). "Pb 0.65 Mn 2.85 Ga 3 S 8 and Pb 0.72 Mn 2.84 Ga 2.95 Se 8 : Two Quaternary Metal Chalcognides with Open-Tunnel-Framework Structures Displaying Intense Second Harmonic Generation Responses and Interesting Magnetic Properties". Inorganic Chemistry. 56 (14): 8454–8461. doi:10.1021/acs.inorgchem.7b01157. ISSN   0020-1669. PMID   28644026.
  85. Chen, Yu-Kun; Chen, Mei-Chun; Zhou, Liu-Jiang; Chen, Ling; Wu, Li-Ming (2013-08-05). "Syntheses, Structures, and Nonlinear Optical Properties of Quaternary Chalcogenides: Pb 4 Ga 4 GeQ 12 (Q = S, Se)". Inorganic Chemistry. 52 (15): 8334–8341. doi:10.1021/ic400995z. ISSN   0020-1669. PMID   23848994.
  86. Wu, Xiaowen; Gu, Xiaofeng; Pan, Hui; Hu, Yi; Wu, Kui (2018-04-13). "Synthesis, Crystal Structures, Optical Properties and Theoretical Calculations of Two Metal Chalcogenides Ba2AlSbS5 and Ba2GaBiSe5". Crystals. 8 (4): 165. doi: 10.3390/cryst8040165 . ISSN   2073-4352.