Selenogallates (or selenidogallates) are chemical compounds which contain anionic units of selenium connected to gallium. They can be considered as gallates where selenium substitutes for oxygen. Similar compounds include the thiogallates and selenostannates. They are in the category of chalcogenotrielates or more broadly chalcogenometallates. [1]
Selenogallates may be produced by heating a metal azide with gallium monoselenide and selenium in a sealed tube. [1]
Selenogallates containing Se2 units are formed by heating with selenium. Conversely, by heating, extra selenium vapour can be lost forming a compound with less selenium. [2]
Most selenogallates are semiconductors. Their resistance drops on exposure to light. Also selenogallates are often coloured, most often red.
Selenogallate structures can include rings such as the four-membered ring: [GaSeGaSe] or the five-membered [GaSeSeGaSe]. These can be linked into chains.
Selenogallates are primarily of research interest. They are being researched for photovoltaic cells where efficiencies over 20% are possible, [3] and for photoconductors, and non-linear optical devices.
name | chem | mw | crystal system | space group | unit cell Å | volume | density | comment | CAS no | references |
---|---|---|---|---|---|---|---|---|---|---|
LiGaSe2 | 234.581 | orthorhombic | Pna21 | a=6.8478 b=8.2575 c=6.5521 Z=4 | 370.5 | 4.206 | band gap 3.39; SHG | [4] | ||
[H2dap]4Ga4Se10 dap = 1,2-diaminopropane | monoclinic | C2/c | a 10.821 b 10.820 c 21.386, β 97.265° | [5] | ||||||
[(dienH2)(dienH)3]Ga5Se10 dien = diethylenetriamine | monoclinic | P21/c | a 6.3116 b 13.748 c 47.890 β 90.640° | chain | [6] | |||||
[(tetaH2)3(teta)]Ga6Se12 teta = triethylenetetramine | monoclinic | Cc | a 20.566 b 25.896 c 12.785 β 125.568° | chain | [6] | |||||
[bappH2][Ga2Se4] bapp =1,4-Bis-(3-aminopropyl)piperazine | 657.63 | triclinic | P1 | a=6.3517 b=7.8498 c=10.7818 α=71.457° β=84.925° γ=72.084° Z=1 | 484.93 | 2.30 | yellow; | [7] | ||
[1,3-pdaH2][Ga2Se2(Se2)(Se3)] 1,3-pda = 1,3-diaminopropane | monoclinic | P21 | a 7.5724 b 12.3856 c 8.0889 β 94.120° | band gap 2.08 eV; GaSeSeSeGaSe & GaSeSeGaSe rings; red | [8] | |||||
[1,4-bdaH2][Ga2Se3(Se2)] 1,4-bda = 1,4-diaminobutane | monoclinic | C2/c | a 11.7660 b 11.7743 c 10.9763 β 110.170° | band gap 2.32 eV; orange | [8] | |||||
[Me2NH2]2[Ga2Se2(Se2)2] | monoclinic | P21/c | a 14.13 b 8.456 c 14.07 β 100.32° | band gap 2.07 eV; red | [8] | |||||
α-[AEPH]2[Ga2Se2(Se2)2] AEP = N-(2-aminoethyl)piperazine | monoclinic | Pn | a 6.981 b 15.436 c 11.831 β 91.462° | band gap 1.93 eV; red | [8] | |||||
β-[AEPH]2[Ga2Se2(Se2)2] | monoclinic | P21/c | a 10.623 b 16.495 c 7.163 β 94.93° | band gap 2.10 eV; red | [8] | |||||
[Ga(en)3][Ga3Se7(en)] · H2O | 1090.02 | orthorhombic | Pna21 | a=14.279 b=9.616 c=19.676 Z=4 | 2701.6 | 2.680 | bicyclic Ga3Se7 | [9] | ||
NaGaS2 | monoclinic | C2/c | a 10.226 b 10.227 c 13.506 β 100.926° | 1389.9 | [10] | |||||
NaGaS2•H2O | monoclinic | C2/c | a=9.5160 b=113986 c=17.8761 β=101.590 | 1899 | [10] | |||||
NaGa3Se5 | 626.95 | orthorhombic | P212121 | a=9.764 b=13.624 c=27.000 Z=16 | 3591.6 | 4.638 | [11] | |||
KGaSe2 | 266.74 | monoclinic | C2/c | a = 10.878, b = 10.872, c = 15.380, β = 100.18° Z=16 | 1790.3 | 3.959 | air stable; light yellow; mp=965 °C; [Ga4Se10]8− units connected into sheets; band gap 2.60 eV | [12] | ||
Cr2.37Ga3Se8 | monoclinic | C2/m | magnetic semiconductor; band gap 0.26 eV | [13] | ||||||
MnGa2Se4 | band gap 2.7 eV | [14] | ||||||||
[Mn(en)3][Ga2Se5] en = Ethylenediamine | 771.51 | orthorhombic | Pbcn | a=9.772 b=15.297 c=13.749 Z=4 | 2055.2 | 2.50 | red; {[Ga2Se5]2-}∞ chains Ga2Se2 and Ga2Se3 rings | [7] | ||
[Mn(dap)3]0.5GaSe2 | orthorhombic | Cmcm | a 9.645 b 16.754 c 12.891 | [5] | ||||||
[Mn(atep)]Ga2S4 atep = 4-(2-aminoethyl)triethylenetetramine | monoclinic | P21/n | a 9.909 b 11.947 c 14.831, β 102.268° | [5] | ||||||
[Co(en)3]Ga2Se | orthorhombic | Cmcm | a 9.692 b 15.631 c 12.698 | band gap 3.27 eV | [6] | |||||
{[Ni(tepa)]2SO4}[Ni(tepa)(Ga4S6(SH)4)] tepa = tetraethylenepentamine | monoclinic | C2/c | a 38.829 b 12.290 c 22.471 β 98.398° | [5] | ||||||
cupric selenogallate | CuGaSe2 | 291.186 | tetragonal | a = 5.5963 c = 11.0036 Z=4 | 344.617 | 5.612 | metallic grey | [15] | ||
ZnGa2Se4 | tetragonal | I42m | [16] | |||||||
ZnGa2Se4 | cubic | Fm3m | >15.5GPa | [16] | ||||||
Na3Zn2Ga2Se4 | 519.90 | tetragonal | I41acd | a 13.481 c 19.26 Z=16 | 3500 | 3.946 | red | [17] | ||
Na6Zn3Ga2Se9 | monoclinic | C2/c | a 16.71 b 16.69 c 13.79 β 101.346° | [18] | ||||||
KZn4Ga5Se12 | R3 | SHG | [19] | |||||||
LiGaGe2Se6 | 695.60 | orthorhombic | Fdd2 | a 12.5035 b 23.710 c 7.1177 | 2110.1 | 4.336 | brown; band gap 2.64 eV; mp=710 °C | [20] [21] | ||
Li2Ga2GeS6 | orthorhombic | Fdd2 | a=12.0796 b=22.73 c=6.84048 | [22] | ||||||
NaGaGe3Se8 | monoclinic | P21/c | a 7.233 b 11.889 c 17.550 β 101.75° | [23] | ||||||
KGaGeSe4 | 497.25 | monoclinic | P21/c | a=7.3552 b=12.4151 c=17.6213 β =97.026 Z=8 | 1597.02 | 4.136 | yellow | [24] | ||
RbGaSe2 | 313.11 | monoclinic | C2/c | a = 10.954, b = 10.949, c = 16.064, β = 99.841° Z=16 | 1898.2 | 4.382 | colourless; mp=930 °C; ∞2[Ga4Se88−] layers of supertetrahedra; | [1] | ||
RbZn4Ga5Se12 | R3 | SHG | [19] | |||||||
RbGaGeSe4 | 543.62 | orthorhombic | Pnma | a=17.5750 b=7.4718 c=12.4449 Z=8 | 1634.23 | 4.419 | orange | [24] | ||
AgGaSe2 | tetragonal | I42d | a = 5.9921, c = 10.883 | 5.71 | transparent from 0.71 to 18 µm; band gap ~1.7 | [25] | ||||
AgGa5Se8 | P42m | a=5.50 c=11.04 | band gap 2.1 eV | [25] | ||||||
Ag9GaSe6 | P213 | band gap 0.56 eV | [25] | |||||||
Ag9GaSe6 | cubic | F43m | a=11.126 | [25] | ||||||
LixAg1–xGaSe2 (x = 0.2–0.8) | tetragonal | I42d | SHG | [4] | ||||||
Na0.45Ag0.55Ga3Se5 | trigonal | R32 | a=13.466 c=16.495 Z=12 | 2590.5 | SHG 1.9 × AGS | [26] | ||||
KAg3Ga8Se14 | 2025.91 | monoclinic | Cm | a 12.8805 b 11.6857 c 9.6600 β 115.998° Z=2 | 1306.87 | 5.148 | orange | [27] | ||
AgGaGe5Se12 | red; transparent for 0.6–16.5 μm; band gap 2.2 eV | [28] | ||||||||
CdGa2Se4 | tetragonal | I4 | a=5.3167 c=10.2858 Z=2 | semiconductor | [29] [30] | |||||
CdGa2Se4 | cubic | F43m | a=5.64 Z=4 | >21 GPa metallic | [30] | |||||
CdGa2Se4 | cubic | Fm3m | a=5.03 Z=4 | 4-7.4 GPa | [30] | |||||
KCd4Ga5Se12 | trigonal | R3 | a 14.362 b 14.362 c 9.724 | [31] | ||||||
RbCd4Ga5Se12 | trigonal | R3 | a 14.4055 b 14.4055 c 9.7688 | band gap 2.19 eV; SHG=19×AgGaS2 | [32] [31] | |||||
InGaSe2 | tetragonal | I4/mcm | a = 8.051, c = 6.317 Z=4 | [33] | ||||||
SnGa4Se7 | 622.08 | monoclinic | Pc | a=7.269 b=6.361 c=12.408 β =106.556 Z=2 | 549.9 | 3.757 | light yellow;SHG 3.8 × AgGaS2 | [34] | ||
KGaSnSe4-cP84 | 543.35 | cubic | Pa3 | a=13.5555 Z=12 | 2490.8 | 4.347 | red | [24] | ||
RbGaSnSe4-cP84 | cubic | Pa3 | a=13.7200 Z=12 | 589.72 | 4.550 | [24] | ||||
RbGaSn2Se6 | 866.33 | trigonal | R3 | a=10.4697 c=9.476 Z=3 | 899.5 | 4.798 | deep red | [35] | ||
SnGa2GeSe6 | 804.48 | orthorhombic | Fdd2 | a = 47.195, b = 7.521, c = 12.183, Z = 16 | 4324 | 4.943 | red; SHG 1.7 × AgGaS2 | |||
CsGaSe2-mC64 | monoclinic | C2/c | a = 11.043, b = 11.015, c = 16.810, β = 99.49°, Z = 16 | 2016.7 | light grey; layers of supertetrahedra ∞2[Ga4Se84–]; band gap 3.5 eV | [36] | ||||
CsGaSe2-mC16 | monoclinic | C2/c | a = 7.651, b = 12.552, c = 6.170, β = 113.62°, Z = 4 | 542.9 | over 610 °C; chains ∞1[GaSe2–] | [36] | ||||
CsGaSe3 | monoclinic | P21/c | a=7.727, b=13.014, c=6.705, β=106.39°, Z=4 | red; chains; band gap 2.25 eV | [37] | |||||
Cs2Ga2Se5 | 800.07 | monoclinic | C2/c | a = 15.3911, b = 7.3577, c = 12.9219, β = 126.395°, Z = 4 | 1177.89 | 4.51 | yellow; ∞1[Ga2Se3(Se2)2–] band gap 1.95 eV | [38] | ||
Cs4Ga6Se11 | triclinic | P1 | a=9.707 b=9.888 c=16.780 α=76.425° β=77.076° γ=60.876° | 1356.3 | ∞1[Ga6Se11]4– | [39] | ||||
Cs6Ga2Se6 | monoclinic | P21/c | a=8.480 b=13.644 c=11.115 β =126.22 Z=2 | mp=685 °C; isolated double tetrahedra [Ga2Se6]6− | [40] | |||||
Cs8Ga4Se10 | triclinic | P1 | a= 7.870 b=9.420 c=11.282 α=103.84° β=93.43° γ=80.88° Z=1 | 4.42 | tetrameric | [41] | ||||
Cs10Ga6Se14 | monoclinic | C2/m | a=18.233 b=12.889 c=9.668 β=108.20 Z=2 | 4.39 | hexameric | [41] | ||||
(Cs6Cl)6Cs3[Ga53Se96] | 16671.51 | trigonal | R3m | a = 11.990, c = 50.012 Z=1 | 6226.5 | 4.446 | yellow; band gap 2.74 eV | [42] | ||
CsZn4Ga5Se12 | trigonal | R3 | [19] | |||||||
CsGaGeSe4 | 591.06 | orthorhombic | Pnma | a=17.7666 b=7.5171 c=12.6383 Z=8 | 1687.9 | 4.652 | white | [24] | ||
Cs2Ge3Ga6Se14 | 2007.41 | P3m1 | a=7.6396 c=13.5866 Z=1 | 686.72 | 4.854 | black | [43] | |||
CsAgGa2Se4 | monoclinic | P21/c | a=11.225, b=7.944, c=21.303, β=103.10, Z=8 | 1850.3 | layered | [44] | ||||
CsCd4Ga5Se12 | trigonal | R3 | a 14.4204 b 14.4204 c 9.7803 | band gap 2.21 eV; SHG=16×AgGaS2 | [32] [31] | |||||
BaGa4Se7 | monoclinic | Pc | a = 7.625, b = 6.511, c = 14.702, β = 121.24° | transparent between 0.47 and 18.0 μm; melts 968 °C; SHG | [45] [46] | |||||
Ba4Ga2Se8 | 132.48 | monoclinic | P21/c | a=13.2393 b=6.4305 c=20.6432 β =104.3148 Z=4 | 1702.90 | 5.151 | black air stable; band gap 1.51 eV | [47] [48] | ||
Ba5Ga2Se8 | orthorhombic | Cmca | a 23.433 b 12.461 c 12.214 | band gap 2.51 eV | [49] | |||||
Ba5Ga4Se10 | 1755.18 | tetragonal | I4/mcm | a = 8.752, c = 13.971 Z = 2 | 1070.2 | 5.447 | red; bicyclic ring with Ga-Ga bridge; band gap 2.20 eV | [50] | ||
Ba3GaSe4Cl | orthorhombic | Pnma | a 12.691 b 9.870 c 8.716 | [51] | ||||||
Ba3GaSe4Br | orthorhombic | Pnma | a = 12.8248, b = 9.9608, c = 8.7690 Z = 4 | band gap 1.7 eV | [52] | |||||
LiBa4Ga5Se12 | 1852.42 | tetragonal | P421c | a 13.591 c 6.515 Z=2 | 1203.3 | 5.113 | yellow; band gap 2.44 eV; SHG 1.7×AgGaS2 | [32] [53] | ||
NaBaGaSe3 | orthorhombic | Pnma | a 20.46 b 9.177 c 7.177 | 1347 | colourless | [54] | ||||
(Na0.60Ba0.70)Ga2Se4 | tetragonal | I4cm | a 7.9549 c 6.2836 | 397.6 | 4.725 | pale yellow | [55] | |||
KBa3Ga5Se10Cl2 | tetragonal | I4 | a 8.6341 c 15.644 | 1166.2 | band gap 2.04 eV; SHG=10×AgGaS2 | [32] [56] | ||||
MnBa4Ga4Se10Cl2 | tetragonal | I4 | 8.5858 c 15.7739 | band gap 2.8 eV; SHG=30×AgGaS2 | [32] [57] | |||||
FeBa4Ga4Se10Cl2 | tetragonal | I4 | a 8.578 c 15.717 | band gap 1.88 eV | [32] [57] | |||||
CoBa4Ga4Se10Cl2 | tetragonal | I4 | a 8.572 c 15.716 | band gap 2.02 eV | [32] [57] | |||||
Cu0.5Ba4Ga4.5Se10Cl2 | tetragonal | I4 | a 8.559 c 15.778 | band gap 2.6 eV; SHG=39×AgGaS2 | [32] [57] | |||||
CuBa4Ga5Se12 | P421c | a = 13.598, c = 6.527, Z = 2 | band gap 1.45 eV; SHG=3×AgGaS2 | [32] [58] | ||||||
ZnBa4Ga4Se10Cl2 | tetragonal | I4 | a 8.561 c 15.757 | band gap 3.08 eV; SHG=59×AgGaS2 | [32] [57] | |||||
Ba10Zn7Ga6Se26 | tetragonal | I42m | a 11.2907 c 21.760 Z=2 | 2774.0 | 5.151 | yellow | [59] | |||
Ba4Ga4GeSe12 | 1848.35 | tetragonal | P421c | a=13.5468 c=6.4915 Z=2 | 1191.29 | 5.153 | orange yellow; band gap 2.18 eV | [47] [60] | ||
BaGa2GeSe6 | R3 | [61] | ||||||||
RbBa3Ga5Se10Cl2 | tetragonal | I4 | a 8.6629 c 15.6379 | band gap 2.05 eV; SHG=20×AgGaS2 | [32] [56] | |||||
Ba2GaYSe5 | triclinic | P1 | a 7.2876Å b 8.6597Å c 9.3876Å, α 103.51° β 103.04° γ 107.43° | [62] | ||||||
Ba4AgGaSe6 | 1199.44 | orthorhombic | Pnma | a=9.1006 b=4.472 c=17.7572 Z=2 | 722.71 | 5.512 | dark red; air stable; band gap 2.50 | [63] | ||
Ba4AgGa5Se12 | 1953.35 | tetragonal | P421c | a 13.6544 c 6.5215 Z=2 | 1215.9 | 5.335 | yellow | [53] | ||
Ba7AgGa5Se15 | trigonal | P31c | a 10.0467 c 18.689 | band gap 2.60 eV | [64] | |||||
CdBa4Ga4Se10Cl2 | tetragonal | I4 | a 8.611 c 15.805 | band gap 3.05 eV; SHG=52×AgGaS2 | [32] [57] | |||||
Ba5CdGa6Se12 | 2401.82 | orthorhombic | Ama2 | a=24.2458 b=19.1582 c=6.6208 Z=4 | 3075.4 | 5.187 | yellow; air stable; band gap 2.60 eV; mp=866 °C | [47] [65] | ||
BaGa2SnSe6 | 869.23 | trigonal | R3 | a = 10.145, c = 9.249 Z = 3 | 824.4 | 5.253 | red; SHG 5.2×AgGaS2 | [66] | ||
Ba4Ga4SnSe12 | 1894.45 | tetragonal | P421c | a 13.607 c 6.509 Z=2 | 1205.2 | 5.221 | red; band gap 2.16 eV | [67] | ||
Ba6Ga2SnSe11 | 1950.73 | monoclinic | P21/c | a 18.715 b 7.109 c 19.165, β 103.29° | 2481.5 | 5.221 | red; bad gap 1.99 eV | [67] | ||
Ba2AsGaSe5 | 814.12 | orthorhombic | Pnma | a = 12.632, b = 8.973, c = 9.203, Z = 4 | 1043.1 | 5.184 | black | [68] | ||
CsBa3Ga5Se10Cl2 | tetragonal | I4 | a 8.734 c 15.697 | 1197.6 | band gap 2.08 eV; SHG=100×AgGaS2 | [32] [56] | ||||
NaLaGa4Se8 | orthorhombic | Fddd | a 21.1979 b 21.1625 c 12.7216 | [69] | ||||||
La3MnGaSe7 | 1094.11 | hexagonal | P63 | a 10.5894 c 6.3458 Z=2 | 616.25 | 5.896 | black | [70] | ||
La3FeGaSe7 | hexagonal | P63 | a=10.5042 c=6.3496 | 606.74 | [71] | |||||
La3CoGaSe7 | hexagonal | P63 | a=10.5104 c=6.3708 | 609.48 | [71] | |||||
La3NiGaSe7 | hexagonal | P63 | a=10.4826 c=6.3964 | 608.71 | [71] | |||||
La3CuGaSe7 | 1102.71 | hexagonal | P63 | a=10.626 c=6.392 Z=2 | 626.0 | 5.859 | [47] | |||
La3ZnGaSe7 | 1104.54 | hexagonal | P63 | a=10.630 c=6.374 Z=2 | 623.7 | 5.881 | [47] | |||
La3Ag0.6GaSe7 | hexagonal | P63 | a=10.6, c=6.4 Z=2 | [72] | ||||||
La3CdGaSe7 | hexagonal | P63 | a=10.606 c=6.380 Z=2 | 621.5 | 6.153 | [47] | ||||
Ba2GaLaSe5 | orthorhombic | Pnma | a 12.5049 b 9.6288 c 8.7355 | [73] | ||||||
NaCeGa4Se8 | orthorhombic | Fddd | a 21.141 b 21.138 c 12.712 | [69] | ||||||
Ce3CuGaSe7 | 1106.34 | hexagonal | P63 | a=10.6007 c=6.3775 Z=2 | 620.65 | 5.920 | [47] | |||
Ba2GaCeSe5 | orthorhombic | Fddd | a 12.494 b 9.599 c 8.738 | [73] | ||||||
Pr3CuGaSe7 | 1108.71 | hexagonal | P63 | a=10.4181 c=6.3743 Z=2 | 599.16 | 6.146 | [47] | |||
NaNdGa4Se8 | orthorhombic | Fddd | a 21.015 b 21.045 c 12.709 | [69] | ||||||
Nd3FeGaSe7 | hexagonal | P63 | a 10.2453 c 6.4076 Z=2 | 582.47 | [74] | |||||
Nd3CoGaSe7 | hexagonal | P63 | a=10.2296 c=6.4272 | 582.47 | [71] | |||||
Nd3NiGaSe7 | hexagonal | P63 | a=10.2117 c=6.4066 | 578.57 | [71] | |||||
Nd3CuGaSe7 | 1118.70 | hexagonal | P63 | a=10.3426 c=6.3869 Z=2 | 591.7 | 6.279 | [47] | |||
Ba2GaNdSe5 | triclinic | P1 | a 7.29Å b 8.7914Å c 9.47Å, α 103.77° β 102.91° γ 107.72° | [62] | ||||||
SmGa2Se4 | rhombic | a=21.34, b=21.60, c=12.74 | [75] | |||||||
Ba2GaSmSe5 | triclinic | P1 | a 7.3017Å b 8.7635Å c 9.4554Å, α 103.672° β 102.963° γ 107.637° | [62] | ||||||
Gd3FeGaSe7 | hexagonal | P63 | a 10.0762 c 6.4265 Z=2 | [74] | ||||||
Ba2GaGdSe5 | triclinic | P1 | a 7.2834Å b 8.7062Å c 9.4079Å, α 103.65° β 103.02° γ 107.52° | [62] | ||||||
Dy3FeGaSe7 | hexagonal | P63 | a 9.9956Å c 6.398 Z=2 | [74] | ||||||
Ba2GaDySe5 | triclinic | P1 | a 7.2772Å b 8.6543Å c 9.3792Å, α 103.53° β 103.07° γ 107.43° | [62] | ||||||
Ba2GaErErSe5 | triclinic | P1 | a 7.2721Å b 8.6258Å c 9.3621Å, α 103.41° β 103.13° γ 107.39° | [62] | ||||||
Ba2GaTbSe5 | triclinic | P1 | a 7.309 b 8.719 c 9.433, α 103.548° β 103.039° γ 107.520° | [73] | ||||||
Ba2GaHoSe5 | triclinic | P1 | a 7.2964 b 8.670 c 9.406, α 103.482° β 103.049° γ 107.423° | [73] | ||||||
Ba2GaTmSe5 | triclinic | P1 | a 7.2884 b 8.6376 c 9.3823, α 103.429° β 103.075° γ 107.360° | [73] | ||||||
Ba2GaYbSe5 | triclinic | P1 | a 7.2864 b 8.6257 c 9.3716, α 103.4154° β 103.0369° γ 107.3396° | [73] | ||||||
Ba2GaLuSe5 | triclinic | P1 | a 7.2829 b 8.6120 c 9.368, α 103.362° β 103.051° γ 107.308° | [73] | ||||||
HgGa2Se4 | [76] | |||||||||
KHg4Ga5Se12 | 2137.58 | trigonal | R3 | a 14.3203 b 14.3203 c 9.7057 Z=3 | 1723.7 | 6.178 | band gap 1.61 eV; SHG=20×AgGaS2 | [32] [77] [78] | ||
TlGaSe2 | 432.01 | monoclinic | C2/c | a=10.760 b=10.762 c=15.626 β=100.19 Z=16 | 1780.8 | 6.445 | black; layers of supertetrahedra; mp 804 °C; band gap 1.87 eV | [79] | ||
TlGaGeSe4 | 662.52 | orthorhombic | Pnma | a=17.4742 b=7.4105 c=11.9406 Z=8 | 1546.22 | 5.692 | [24] | |||
Tl2Ga2GeSe6 | tetragonal | I4/mmc | a=8.0770 c=6.2572 Z=4 | [80] | ||||||
Tl0.8Ga0.8Ge1.2Se4-mC112 | 622.22 | monoclinic | C2/c | a=13.5831 b=7.4015 c=30.7410 β =96.066 Z=16 | 3073.3 | 5.379 | red | [24] | ||
TlGaSnSe4-mP56 | 701.04 | monoclinic | P21/c | a=7.501 b=12.175 c=18.203 β =97.164 Z=8 | 1649.4 | 5.646 | red | [24] | ||
TlGaSnSe4-cP84 | 708.62 | cubic | Pa3 | a=13.4755 Z=12 | 2447.0 | 5.770 | red | [24] | ||
Tl2Ga2SnSe6 | tetragonal | I4/mmc | a=8.095 c=6.402 Z=4 | [80] | ||||||
TlGaSn2Se6 | R3 | a=10.3289 c=9.4340 | 871.64 | 5.6301 | dark grey in bulk; maroon powder | [81] | ||||
PbGa2Se4 | 662.47 | orthorhombic | Fddd | a =12.73 b=21.26 c=21.55 Z=32 | 5830 | 6.036 | yellow to red; mp 780 °C; band gap 1.83 eV | [82] [83] | ||
Pb0.72Mn2.84Ga2.95Se8 | hexagonal | P6 | a 17.550 c 3.8916 | [84] | ||||||
PbGa2GeSe6 | orthorhombic | Fdd2 | mp 720 °C biaxial (−) | [61] | ||||||
Pb4Ga4GeSe12 | tetragonal | P421c | a = 13.064 c = 6.310 Z=2 | [85] | ||||||
Ba2GaBiSe5 | orthorhombic | Pnma | a=12.691 b=9.190 c=9.245 Z=4 | 1078.2 | 5.841 | yellow | [86] |
In chemistry and materials science, thiosilicate refers to materials containing anions of the formula [SiS2+n]2n−. Derivatives where some sulfide is replaced by oxide are also called thiosilicates, examples being materials derived from the oxohexathiodisilicate [Si2OS6]6−. Silicon is tetrahedral in all thiosilicates and sulfur is bridging or terminal. Formally such materials are derived from silicon disulfide in analogy to the relationship between silicon dioxide and silicates. Thiosilicates are typically encountered as colorless solids. They are characteristically sensitive to hydrolysis. They are from the class of chalcogenidotetrelates.
Fluorooxoborate is one of a series of anions or salts that contain boron linked to both oxygen and fluorine. Several structures are possible, rings, or chains. They contain [BOxF4−x](x+1)− units BOF32− BO2F23−, or BO3F14−. In addition there can be borate BO3 triangles and BO4 tetrahedrons. These can then be linked by sharing oxygen atoms, and when they do that, the negative charge is reduced. They are distinct from the fluoroborates in which fluorine is bonded to the metals rather than the boron atoms. For example, KBBF, KBe2BO3F2 is a fluoroborate and has more fluorine and oxygen than can be accommodated by the boron atom.
The borate fluorides or fluoroborates are compounds containing borate or complex borate ions along with fluoride ions that form salts with cations such as metals. They are in the broader category of mixed anion compounds. They are not to be confused with tetrafluoroborates (BF4) or the fluorooxoborates which have fluorine bonded to boron.
The iodate fluorides are chemical compounds which contain both iodate and fluoride anions (IO3− and F−). In these compounds fluorine is not bound to iodine as it is in fluoroiodates.
The sulfate fluorides are double salts that contain both sulfate and fluoride anions. They are in the class of mixed anion compounds. Some of these minerals are deposited in fumaroles.
A selenite fluoride is a chemical compound or salt that contains fluoride and selenite anions. These are mixed anion compounds. Some have third anions, including nitrate, molybdate, oxalate, selenate, silicate and tellurate.
Borate sulfides are chemical mixed anion compounds that contain any kind of borate and sulfide ions. They are distinct from thioborates in which sulfur atoms replace oxygen in borates. There are also analogous borate selenides, with selenium ions instead of sulfur.
The borate chlorides are chemical compounds that contain both borate ions and chloride ions. They are mixed anion compounds. Many of them are minerals. Those minerals that crystallise with water (hydrates) may be found in evaporite deposits formed when mineral water has dried out.
The borate bromides are mixed anion compounds that contain borate and bromide anions. They are in the borate halide family of compounds which also includes borate fluorides, borate chlorides, and borate iodides.
Selenide borates, officially known as borate selenides, are chemical mixed anion compounds that contain any kind of borate and selenide ions. They are distinct from selenoborates in which selenium atoms replace oxygen in borates. There are also analogous borate sulfides, with sulfur ions instead of selenium.
Sulfidostannates, or thiostannates are chemical compounds containing anions composed of tin linked with sulfur. They can be considered as stannates with sulfur substituting for oxygen. Related compounds include the thiosilicates, and thiogermanates, and by varying the chalcogen: selenostannates, and tellurostannates. Oxothiostannates have oxygen in addition to sulfur. Thiostannates can be classed as chalcogenidometalates, thiometallates, chalcogenidotetrelates, thiotetrelates, and chalcogenidostannates. Tin is almost always in the +4 oxidation state in thiostannates, although a couple of mixed sulfides in the +2 state are known,
Arsenidosilicates are chemical compounds that contain anions with arsenic bonded to silicon. They are in the category of tetrelarsenides, pnictidosilicates, or tetrelpnictides. They can be classed as Zintl phases or intermetallics. They are analogous to the nitridosilicates, phosphidosilicates, arsenidogermanates, and arsenidostannates. They are distinct from arsenate silicates which have oxygen connected with arsenic and silicon, or arsenatosilicates with arsenate groups sharing oxygen with silicate.
Selenidogermanates are compounds with anions with selenium bound to germanium. They are analogous with germanates, thiogermanates, and telluridogermanates.
Sulfidogermanates or thiogermanates are chemical compounds containing anions with sulfur atoms bound to germanium. They are in the class of chalcogenidotetrelates. Related compounds include thiosilicates, thiostannates, selenidogermanates, telluridogermanates and selenidostannates.
Iodate nitrates are mixed anion compounds that contain both iodate and nitrate anions.
Selenidostannates are chemical compounds which contain anionic units of selenium connected to tin. They can be considered as stannates where selenium substitutes for oxygen. Similar compounds include the selenogermanates and thiostannates. They are in the category of chalcogenidotetrelates or more broadly chalcogenometallates.
Tellurogermanates or telluridogermanates are compounds with anions with tellurium bound to germanium. They are analogous with germanates, thiogermanates and selenidogermanates.
Strontium selenide is an inorganic compound with the chemical formula SrSe.
A fluorooxoiodate or fluoroiodate is a chemical compound or ion derived from iodate, by substituting some of the oxygen by fluorine. They have iodine in the +5 oxidation state. The iodine atoms have a stereochemically active lone-pair of electrons. Many are non-centrosymmetric, and are second harmonic generators (SHG) of intense light shining through them. They are under investigation as materials for non-linear optics, such as for generating ultraviolet light from visible or infrared lasers.
When values of birefingence are very high, the property is termed giant birefringence which more generically is called giant optical anisotropy. Values for giant birefringence exceed 0.3. Much bigger numbers are termed "colossal birefringence". These are achieved using nanostructures.
{{cite journal}}
: Cite journal requires |journal=
(help)