Calcium monohydride

Last updated
Calcium monohydride
Calcium Monohydride.svg
IUPAC name
Calcium monohydride
Other names
Calcium(I) hydride
3D model (JSmol)
PubChem CID
  • InChI=1S/Ca.2H/q+1;;-1 X mark.svgN
  • InChI=1S/Ca.H
  • [H].[Ca]
Molar mass 41.085899 g/mol
Appearanceglowing red gas
reacts violently
Related compounds
Other cations
Beryllium monohydride,
Magnesium monohydride,
Strontium monohydride,
Barium monohydride,
Potassium hydride
Related calcium hydrides
Calcium hydride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Calcium monohydride is a molecule composed of calcium and hydrogen with formula CaH. It can be found in stars as a gas formed when calcium atoms are present with hydrogen atoms.



Calcium monohydride was first discovered when its spectrum was observed in Alpha Herculis and ο Ceti by Alfred Fowler in 1907. [1] [2] It was observed in sunspots the following year by C. M. Olmsted. [3] [4] Next, it was made in a laboratory in 1909 by A. Eagle, [3] and with early research by Hulthèn, [5] and Watson and Weber in 1935. [6] It was further observed in red dwarfs by Y. Öhman in 1934. Öhman proposed its use as a proxy for stellar luminosity, similar to magnesium monohydride (MgH), in being more apparent in the spectra of compact, cool, high surface gravity stars such as M dwarfs than in cool, low surface gravity stars such as M giants of non-negligible, or even comparable, metallicity. [7]

Calcium monohydride is the first molecular gas that was cooled by a cold buffer gas and then trapped by a magnetic field. This extends the study of trapped cold atoms such as rubidium to molecules. [8]


Calcium monohydride can be formed by exposing metallic calcium to an electric discharge in a hydrogen atmosphere above 750 °C. Below this temperature the hydrogen is absorbed to form calcium hydride. [3]

Calcium monohydride can be formed by laser ablation of calcium dihydride in a helium atmosphere. [9]

Gaseous calcium reacts with formaldehyde at temperatures around 1200 K to make CaH as well as some CaOH and CaO. This reaction glows orange-red.


The dipole moment of the CaH molecule is 2.94 debye. [10] [11] Spectrographic constants have been measured as bond length Re=2.0025 Å dissociation energy De=1.837 eV and harmonic vibrational frequency ωe=1298.34 cm−1. [10] Ionisation potential is 5.8 eV. [10] Electron affinity is 0.9 eV. [10]

The ground state is X2Σ+. [10]

The electronic states are: [12]


B2Σ, with ν'=0 ← X2Σ with ν"=0 634 nm (or is it 690 nm?) [14] CaH fluoresces with 634 nm light giving 690 nm emissions. [9]

B2Σ+ ← X2Σ+ 585.8 nm to 590.2 nm. [15]

A+2Π ← X2Σ+ 686.2 to 697.8 nm [15]

R12 branch [15]


R2 branch [15]


C2Σ+ →X2Σ+ transition is in near ultraviolet. [3]

Microwave spectrum

The energy required to spin the CaH molecule from its lowest level to the first quantum level corresponds to a microwave frequency, so there is an absorption around 253 GHz. However, the spin of the molecule is also affected by the spin of an unpaired electron on the calcium, and the spin of the proton in the hydrogen. The electron spin leads to splitting of the line by about 1911.7 MHz, and the spin relative to the proton spin results in hyperfine splitting of the line by about 157.3 MHz. [16]

molecule spin
quantum number
electron spin
quantum number
proton spin
quantum number


CaH reacts with Lithium as a cold gas releasing 0.9eV of energy and forming LiH molecules and calcium atoms. [17]

Extra reading

Related Research Articles

<span class="mw-page-title-main">Rotational spectroscopy</span> Spectroscopy of quantized rotational states of gases

Rotational spectroscopy is concerned with the measurement of the energies of transitions between quantized rotational states of molecules in the gas phase. The spectra of polar molecules can be measured in absorption or emission by microwave spectroscopy or by far infrared spectroscopy. The rotational spectra of non-polar molecules cannot be observed by those methods, but can be observed and measured by Raman spectroscopy. Rotational spectroscopy is sometimes referred to as pure rotational spectroscopy to distinguish it from rotational-vibrational spectroscopy where changes in rotational energy occur together with changes in vibrational energy, and also from ro-vibronic spectroscopy where rotational, vibrational and electronic energy changes occur simultaneously.

<span class="mw-page-title-main">Morse potential</span> Model for the potential energy of a diatomic molecule

The Morse potential, named after physicist Philip M. Morse, is a convenient interatomic interaction model for the potential energy of a diatomic molecule. It is a better approximation for the vibrational structure of the molecule than the quantum harmonic oscillator because it explicitly includes the effects of bond breaking, such as the existence of unbound states. It also accounts for the anharmonicity of real bonds and the non-zero transition probability for overtone and combination bands. The Morse potential can also be used to model other interactions such as the interaction between an atom and a surface. Due to its simplicity, it is not used in modern spectroscopy. However, its mathematical form inspired the MLR (Morse/Long-range) potential, which is the most popular potential energy function used for fitting spectroscopic data.

<span class="mw-page-title-main">Ammonia borane</span> Chemical compound

Ammonia borane (also systematically named amminetrihydridoboron), also called borazane, is the chemical compound with the formula H3NBH3. The colourless or white solid is the simplest molecular boron-nitrogen-hydride compound. It has attracted attention as a source of hydrogen fuel, but is otherwise primarily of academic interest.

In nuclear chemistry and nuclear physics, J-couplings are mediated through chemical bonds connecting two spins. It is an indirect interaction between two nuclear spins that arises from hyperfine interactions between the nuclei and local electrons. In NMR spectroscopy, J-coupling contains information about relative bond distances and angles. Most importantly, J-coupling provides information on the connectivity of chemical bonds. It is responsible for the often complex splitting of resonance lines in the NMR spectra of fairly simple molecules.

<span class="mw-page-title-main">Helium hydride ion</span> Chemical compound

The helium hydride ion or hydridohelium(1+) ion or helonium is a cation (positively charged ion) with chemical formula HeH+. It consists of a helium atom bonded to a hydrogen atom, with one electron removed. It can also be viewed as protonated helium. It is the lightest heteronuclear ion, and is believed to be the first compound formed in the Universe after the Big Bang.

Physical organic chemistry, a term coined by Louis Hammett in 1940, refers to a discipline of organic chemistry that focuses on the relationship between chemical structures and reactivity, in particular, applying experimental tools of physical chemistry to the study of organic molecules. Specific focal points of study include the rates of organic reactions, the relative chemical stabilities of the starting materials, reactive intermediates, transition states, and products of chemical reactions, and non-covalent aspects of solvation and molecular interactions that influence chemical reactivity. Such studies provide theoretical and practical frameworks to understand how changes in structure in solution or solid-state contexts impact reaction mechanism and rate for each organic reaction of interest.

<span class="mw-page-title-main">Imidogen</span> Inorganic radical with the chemical formula NH

Imidogen is an inorganic compound with the chemical formula NH. Like other simple radicals, it is highly reactive and consequently short-lived except as a dilute gas. Its behavior depends on its spin multiplicity.

Beryllium monohydride (BeH) is an example of a molecule with a half-bond order according to molecular orbital theory. It is a metastable monoradical species which has only been observed in the gas phase. In beryllium monohydride, beryllium has a valency of one, and hydrogen has a valency of one.

<span class="mw-page-title-main">Copper hydride</span> Chemical compound

Copper hydride is inorganic compound with the chemical formula CuHn where n ~ 0.95. It is a red solid, rarely isolated as a pure composition, that decomposes to the elements. Copper hydride is mainly produced as a reducing agent in organic synthesis and as a precursor to various catalysts.

<span class="mw-page-title-main">Chromium(I) hydride</span> Chemical compound

Chromium(I) hydride, systematically named chromium hydride, is an inorganic compound with the chemical formula (CrH)
. It occurs naturally in some kinds of stars where it has been detected by its spectrum. However, molecular chromium(I) hydride with the formula CrH has been isolated in solid gas matrices. The molecular hydride is very reactive. As such the compound is not well characterised, although many of its properties have been calculated via computational chemistry.

<span class="mw-page-title-main">Iron(I) hydride</span> Chemical compound

Iron(I) hydride, systematically named iron hydride and poly(hydridoiron) is a solid inorganic compound with the chemical formula (FeH)
(also written ([FeH])
or FeH). It is both thermodynamically and kinetically unstable toward decomposition at ambient temperature, and as such, little is known about its bulk properties.

<span class="mw-page-title-main">Morse/Long-range potential</span> Model of the potential energy of a diatomic molecule

The Morse/Long-range potential (MLR potential) is an interatomic interaction model for the potential energy of a diatomic molecule. Due to the simplicity of the regular Morse potential (it only has three adjustable parameters), it is very limited in its applicability in modern spectroscopy. The MLR potential is a modern version of the Morse potential which has the correct theoretical long-range form of the potential naturally built into it. It has been an important tool for spectroscopists to represent experimental data, verify measurements, and make predictions. It is useful for its extrapolation capability when data for certain regions of the potential are missing, its ability to predict energies with accuracy often better than the most sophisticated ab initio techniques, and its ability to determine precise empirical values for physical parameters such as the dissociation energy, equilibrium bond length, and long-range constants. Cases of particular note include:

  1. the c-state of dilithium (Li2): where the MLR potential was successfully able to bridge a gap of more than 5000 cm−1 in experimental data. Two years later it was found that the MLR potential was able to successfully predict the energies in the middle of this gap, correctly within about 1 cm−1. The accuracy of these predictions was much better than the most sophisticated ab initio techniques at the time.
  2. the A-state of Li2: where Le Roy et al. constructed an MLR potential which determined the C3 value for atomic lithium to a higher-precision than any previously measured atomic oscillator strength, by an order of magnitude. This lithium oscillator strength is related to the radiative lifetime of atomic lithium and is used as a benchmark for atomic clocks and measurements of fundamental constants.
  3. the a-state of KLi: where the MLR was used to build an analytic global potential successfully despite there only being a small amount of levels observed near the top of the potential.
<span class="mw-page-title-main">Magnesium monohydride</span> Chemical compound

Magnesium monohydride is a molecular gas with formula MgH that exists at high temperatures, such as the atmospheres of the Sun and stars. It was originally known as magnesium hydride, although that name is now more commonly used when referring to the similar chemical magnesium dihydride.

<span class="mw-page-title-main">Helium dimer</span> Chemical compound

The helium dimer is a van der Waals molecule with formula He2 consisting of two helium atoms. This chemical is the largest diatomic molecule—a molecule consisting of two atoms bonded together. The bond that holds this dimer together is so weak that it will break if the molecule rotates, or vibrates too much. It can only exist at very low cryogenic temperatures.

Argon compounds, the chemical compounds that contain the element argon, are rarely encountered due to the inertness of the argon atom. However, compounds of argon have been detected in inert gas matrix isolation, cold gases, and plasmas, and molecular ions containing argon have been made and also detected in space. One solid interstitial compound of argon, Ar1C60 is stable at room temperature. Ar1C60 was discovered by the CSIRO.

<span class="mw-page-title-main">Argonium</span> Chemical compound

Argonium (also called the argon hydride cation, the hydridoargon(1+) ion, or protonated argon; chemical formula ArH+) is a cation combining a proton and an argon atom. It can be made in an electric discharge, and was the first noble gas molecular ion to be found in interstellar space.

<span class="mw-page-title-main">Dirubidium</span> Chemical compound

Dirubidium is a molecular substance containing two atoms of rubidium found in rubidium vapour. Dirubidium has two active valence electrons. It is studied both in theory and with experiment. The rubidium trimer has also been observed.

<span class="mw-page-title-main">Silylidyne</span> Chemical compound

Silylidyne is a chemical substance occurring as a molecule found in stars and probably existing in interstellar space, or as a monolayer on the surface of solid silicon. The SiH molecule is a radical, and can be made experimentally by striking an electric arc to silicon on a low pressure hydrogen gas.

Borane(1), boron monohydride, hydridoboron or borylene is the molecule with the formula BH. It exists as a gas but rapidly degrades when condensed. By contrast, the cluster [[B12H12]]2- (dodecaborate), which has very similar empirical formula, forms robust salts.

<span class="mw-page-title-main">Aluminium monohydroxide</span> Chemical compound

Hydroxyaluminium(I), also known as Aluminium(I) hydroxide, is an inorganic chemical with molecular formula AlOH. It consists of aluminium in the +1 oxidation state paired with a single hydroxide. It has been detected as a molecular substance in the envelope of an oxygen-rich red supergiant star, a place where substances containing metals or hydroxides are thought to be rare.


  1. Barbuy, B.; Schiavon, R. P.; Gregorio-Hetem, J.; Singh, P. D.; Batalha, C. (October 1993). "Intensity of CaH Lines in Cool Dwarfs". Astronomy and Astrophysics Supplement Series. 101 (2): 409. Bibcode:1993A&AS..101..409B.
  2. Fowler, A. (1907). "The fluted spectrum of titanium oxide". Proceedings of the Royal Society A. 79 (533): 509–18. Bibcode:1907RSPSA..79..509F. doi: 10.1098/rspa.1907.0059 .
  3. 1 2 3 4 Frum, C.I.; H.M. Pickett (1993). "High-Resolution Infrared Fourier Transform Emission Spectroscopy of Metal Hydrides: X2Σ+ state of CaH". Journal of Molecular Spectroscopy. 159 (2): 329–336. Bibcode:1993JMoSp.159..329F. doi:10.1006/jmsp.1993.1130.
  4. Olmsted, Charles M. (1908). "Sun-spot bands which appear in the spectrum of a calcium arc burning in the presence of hydrogen". Contributions from the Solar Observatory of the Carnegie Institution of Washington. 21: 1–4. Bibcode:1908CMWCI..21....1O.
  5. Hulthèn, E. (1 January 1927). "On The Band Spectrum of Calcium Hydride". Physical Review. 29 (1): 97–111. Bibcode:1927PhRv...29...97H. doi:10.1103/PhysRev.29.97.
  6. Watson, William; Weber, Robert (1 November 1935). "The E Band System of Calcium Hydride". Physical Review. 48 (9): 732–734. Bibcode:1935PhRv...48..732W. doi:10.1103/PhysRev.48.732.
  7. Öhman, Yngve (October 1934). "Spectrographic Studies in the Red". Astrophysical Journal. 80: 171. Bibcode:1934ApJ....80..171O. doi:10.1086/143595.
  8. Bretislav Friedrich; John M. Doyle (2009). "Why are Cold Molecules so Hot?". ChemPhysChem. 10 (4): 604–623. doi:10.1002/cphc.200800577. PMID   19229896.
  9. 1 2 Doyle, John M.; Jonathan D. Weinstein; Robert deCarvalho; Thierry Guillet; Bretislav Friedrich (1998). "Magnetic trapping of calcium monohydride molecules at millikelvin temperatures". Nature. 395 (6698): 148–150. Bibcode:1998Natur.395..148W. doi:10.1038/25949. S2CID   38268509.
  10. 1 2 3 4 5 Holka, Filip; Miroslav Urban (2006). "The dipole moment and molecular properties of CaH: A theoretical study". Chemical Physics Letters. 426 (4–6): 252–256. Bibcode:2006CPL...426..252H. doi:10.1016/j.cplett.2006.05.108.
  11. Steimle, T. C.; Jinhai Chen; Jamie Gengler (2004-07-08). "The permanent electric dipole moments of calcium monohydride, CaH". The Journal of Chemical Physics. 121 (2): 829–834. Bibcode:2004JChPh.121..829S. doi:10.1063/1.1759314. PMID   15260612.
  12. Ram, R.S.; Tereszchuk, K.; Gordon, I.E.; Walker, K.A.; Bernath, P.F. (2011). "Fourier transform emission spectroscopy of the E2Π–X2Σ+ transition of CaH and CaD". Journal of Molecular Spectroscopy. 266 (2): 86–91. Bibcode:2011JMoSp.266...86R. doi:10.1016/j.jms.2011.03.009.
  13. Gordon, I.; Ram, R. S.; Tereszchuk, K.; Walker, K. A.; Bernath, P. F. (1 April 2011). "Fourier Transform Emission Spectroscopy of the E2Π–X2Σ+ System of CaH and CaD". hdl:1811/49445.{{cite journal}}: Cite journal requires |journal= (help)
  14. Berg, L-E; L Klynning (1974). "Rotational Analysis of the A-X and B-X Band Systems of CaH". Physica Scripta. 10 (6): 331–336. Bibcode:1974PhyS...10..331B. doi:10.1088/0031-8949/10/6/009. S2CID   250910373.
  15. 1 2 3 4 Pereira, R.; S. Skowronek; A. González Ureña; A. Pardo; J.M.L. Poyato; A.H. Pardo (2002). "Rotationally Resolved REMPI Spectra of CaH in a Molecular Beam". Journal of Molecular Spectroscopy. 212 (1): 17–21. Bibcode:2002JMoSp.212...17P. doi:10.1006/jmsp.2002.8531.
  16. Barclay, W. L., Jr.; Anderson, M. A.; Ziurys, L. M. (1993). "The millimeter-wave spectrum of CaH (X 2Σ+)". Astrophysical Journal Letters. 408 (1): L65–L67. Bibcode:1993ApJ...408L..65B. doi:10.1086/186832.
  17. Singh, Vijay; Kyle S. Hardman; Naima Tariq; Mei-Ju Lu; Aja Ellis; Muir J. Morrison; Jonathan D. Weinstein (2012). "Chemical Reactions of Atomic Lithium and Molecular Calcium Monohydride at 1 K". Physical Review Letters. 108 (20): 203201. Bibcode:2012PhRvL.108t3201S. doi: 10.1103/PhysRevLett.108.203201 . PMID   23003146.