Zirconium(II) hydride

Last updated
Zirconium(II) hydride [1]
Zirconium(II) hydride powder.jpg
Names
IUPAC name
Zirconium(II) hydride [2] [3]
Other names
  • Hydride;zirconium(2+) [2]
  • Zirconium(2+) dihydride [2] [3]
  • Zirconium dihydride [2] [3]
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.028.844 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 231-727-3
PubChem CID
RTECS number
UNII
  • InChI=1S/Zr.2H
    Key: QSGNKXDSTRDWKA-UHFFFAOYSA-N
  • [ZrH2]
  • [H-].[H-].[Zr+2]
Properties
ZrH2
Molar mass 93.240 g/mol
AppearanceGrey tetragonal crystals or dark gray to black metallic powder [4] [5]
Odor Odorless [4]
Density 5.60 g/cm3
Melting point 800°C (decomposes)
Insoluble [5]
Solubility Soluble in HF
Structure
tetragonal
dihedral (C2v)
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Skin irritation, eye irritation, flammable [5]
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-exclam.svg
Danger
H228, H315, H319, H335
P210, P240, P241, P261, P264, P271, P280, P302+P352, P304+P340+P312, P305+P351+P338, P332+P313, P337+P313, P362, P370+P378, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
1
3
1
270 °C
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Zirconium(II) hydride is a molecular chemical compound with the chemical formula Zr H 2. It is a grey crystalline solid or dark gray to black powder. [4] [5] It has been prepared by laser ablation and isolated at low temperature. [6]

Contents

Zirconium(II) hydride has repeatedly been the subject of DiracHartree–Fock relativistic calculation studies, which investigate the stabilities, geometries, and relative energies of hydrides of the formula MH4, MH3, MH2, or MH.

Zirconium(II) hydride has a dihedral (C2v) structure. In zirconium(II) hydride, the formal oxidation states of zirconium and hydrogen are +2 and −1, respectively, because the electronegativity of zirconium is lower than that of hydrogen. The stability of metal hydrides with the formula MH2 (M = Ti, Zr, Hf) decreases from Ti to Hf.

Uses

Zirconium(II) hydride is used as a thermal neutron moderator in nuclear reactors and as a material for neutron reflectors in fast reactors. [4]

Zirconium(II) hydride in the form of a powder is used in powder metallurgy as a hydrogenation catalyst, vacuum tube getter, foaming agent in the production of metal foams and as a reducing agent. [4]

Related Research Articles

<span class="mw-page-title-main">Hafnium</span> Chemical element, symbol Hf and atomic number 72

Hafnium is a chemical element; it has symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles zirconium and is found in many zirconium minerals. Its existence was predicted by Dmitri Mendeleev in 1869, though it was not identified until 1923, by Dirk Coster and George de Hevesy, making it the penultimate stable element to be discovered. Hafnium is named after Hafnia, the Latin name for Copenhagen, where it was discovered.

<span class="mw-page-title-main">Zirconium</span> Chemical element, symbol Zr and atomic number 40

Zirconium is a chemical element; it has symbol Zr and atomic number 40. The name zirconium is derived from the name of the mineral zircon, the most important source of zirconium. The word is related to Persian zargun. It is a lustrous, grey-white, strong transition metal that closely resembles hafnium and, to a lesser extent, titanium. Zirconium is mainly used as a refractory and opacifier, although small amounts are used as an alloying agent for its strong resistance to corrosion. Zirconium forms a variety of inorganic and organometallic compounds such as zirconium dioxide and zirconocene dichloride, respectively. Five isotopes occur naturally, four of which are stable. Zirconium compounds have no known biological role.

<span class="mw-page-title-main">Lithium hydride</span> Chemical compound

Lithium hydride is an inorganic compound with the formula LiH. This alkali metal hydride is a colorless solid, although commercial samples are grey. Characteristic of a salt-like (ionic) hydride, it has a high melting point, and it is not soluble but reactive with all protic organic solvents. It is soluble and nonreactive with certain molten salts such as lithium fluoride, lithium borohydride, and sodium hydride. With a molar mass of 7.95 g/mol, it is the lightest ionic compound.

<span class="mw-page-title-main">Zirconium hydride</span> Alloy of zirconium and hydrogen

Zirconium hydride describes an alloy made by combining zirconium and hydrogen. Hydrogen acts as a hardening agent, preventing dislocations in the zirconium atom crystal lattice from sliding past one another. Varying the amount of hydrogen and the form of its presence in the zirconium hydride controls qualities such as the hardness, ductility, and tensile strength of the resulting zirconium hydride. Zirconium hydride with increased hydrogen content can be made harder and stronger than zirconium, but such zirconium hydride is also less ductile than zirconium.

<span class="mw-page-title-main">Zirconium carbide</span> Chemical compound

Zirconium carbide (ZrC) is an extremely hard refractory ceramic material, commercially used in tool bits for cutting tools. It is usually processed by sintering.

<span class="mw-page-title-main">Calcium hydride</span> Chemical compound

Calcium hydride is the chemical compound with the formula CaH2, and is therefore an alkaline earth hydride. This grey powder reacts vigorously with water liberating hydrogen gas. CaH2 is thus used as a drying agent, i.e. a desiccant.

Zirconium(IV) bromide is the inorganic compound with the formula ZrBr4. This colourless solid is the principal precursor to other Zr–Br compounds.

<span class="mw-page-title-main">Zirconium tetrafluoride</span> Chemical compound

Zirconium(IV) fluoride describes members of a family inorganic compounds with the formula (ZrF4(H2O)x. All are colorless, diamagnetic solids. Anhydrous Zirconium(IV) fluoride' is a component of ZBLAN fluoride glass.

<span class="mw-page-title-main">Titanium hydride</span> Chemical compound

Titanium hydride normally refers to the inorganic compound TiH2 and related nonstoichiometric materials. It is commercially available as a stable grey/black powder, which is used as an additive in the production of Alnico sintered magnets, in the sintering of powdered metals, the production of metal foam, the production of powdered titanium metal and in pyrotechnics.

<span class="mw-page-title-main">Borohydride</span>

Borohydride refers to the anion [BH4], which is also called tetrahydridoborate, and its salts. Borohydride or hydroborate is also the term used for compounds containing [BH4−nXn], where n is an integer from 0 to 3, for example cyanoborohydride or cyanotrihydroborate [BH3(CN)] and triethylborohydride or triethylhydroborate [BH(CH2CH3)3]. Borohydrides find wide use as reducing agents in organic synthesis. The most important borohydrides are lithium borohydride and sodium borohydride, but other salts are well known. Tetrahydroborates are also of academic and industrial interest in inorganic chemistry.

<span class="mw-page-title-main">Plumbane</span> Chemical compound

Plumbane is an inorganic chemical compound with the chemical formula PbH4. It is a colorless gas. It is a metal hydride and group 14 hydride composed of lead and hydrogen. Plumbane is not well characterized or well known, and it is thermodynamically unstable with respect to the loss of a hydrogen atom. Derivatives of plumbane include lead tetrafluoride, PbF4, and tetraethyllead, (CH3CH2)4Pb.

<span class="mw-page-title-main">Organozirconium and organohafnium chemistry</span>

Organozirconium chemistry is the science of exploring the properties, structure, and reactivity of organozirconium compounds, which are organometallic compounds containing chemical bonds between carbon and zirconium. Organozirconium compounds have been widely studied, in part because they are useful catalysts in Ziegler-Natta polymerization.

Transition metal hydrides are chemical compounds containing a transition metal bonded to hydrogen. Most transition metals form hydride complexes and some are significant in various catalytic and synthetic reactions. The term "hydride" is used loosely: some of them are acidic (e.g., H2Fe(CO)4), whereas some others are hydridic, having H-like character (e.g., ZnH2).

Uranium hydride, also called uranium trihydride (UH3), is an inorganic compound and a hydride of uranium.

<span class="mw-page-title-main">Zirconium(III) chloride</span> Chemical compound

Zirconium(III) chloride is an inorganic compound with formula ZrCl3. It is a blue-black solid that is highly sensitive to air.

Scandium trihydride is an unstable molecular chemical compound with the chemical formula ScH3. It has been formed as one of a number of other molecular scandium hydride products at low temperature using laser ablation and identified by infrared spectroscopy. Scandium trihydride has recently been the subject of Dirac–Hartree–Fock relativistic calculation studies, which investigate the stabilities, geometries, and relative energies of hydrides of the formula MH3, MH2, or MH.

Binary compounds of hydrogen are binary chemical compounds containing just hydrogen and one other chemical element. By convention all binary hydrogen compounds are called hydrides even when the hydrogen atom in it is not an anion. These hydrogen compounds can be grouped into several types.

Ultra-high-temperature ceramics (UHTCs) are a type of refractory ceramics that that can withstand extremely high temperatures without degrading, often above 2,000 °C. They also often have high thermal conductivities and are highly resistant to thermal shock, meaning they can withstand sudden and extreme changes in temperature without cracking or breaking. Chemically, they are usually borides, carbides, nitrides, and oxides of early transition metals.

Group 14 hydrides are chemical compounds composed of hydrogen atoms and group 14 atoms.

Hafnium compounds are compounds containing the element hafnium (Hf). Due to the lanthanide contraction, the ionic radius of hafnium(IV) (0.78 ångström) is almost the same as that of zirconium(IV) (0.79 angstroms). Consequently, compounds of hafnium(IV) and zirconium(IV) have very similar chemical and physical properties. Hafnium and zirconium tend to occur together in nature and the similarity of their ionic radii makes their chemical separation rather difficult. Hafnium tends to form inorganic compounds in the oxidation state of +4. Halogens react with it to form hafnium tetrahalides. At higher temperatures, hafnium reacts with oxygen, nitrogen, carbon, boron, sulfur, and silicon. Some compounds of hafnium in lower oxidation states are known.

References

  1. Lide, David R. (1998), Handbook of Chemistry and Physics (87 ed.), Boca Raton, FL: CRC Press, pp. 4–96, ISBN   0-8493-0594-2
  2. 1 2 3 4 https://pubchem.ncbi.nlm.nih.gov/compound/Zirconium-dihydride
  3. 1 2 3 http://www.chemspider.com/Chemical-Structure.24771611.html
  4. 1 2 3 4 5 6 https://www.samaterials.com/zirconia-ceramic/1428-zirconium-hydride.html
  5. 1 2 3 4 https://www.samaterials.com/pdf/Zirconium-Hydride-sds.pdf
  6. Chertihin, George V.; Andrews, Lester (1995). "Reactions of laser-ablated Zr and Hf atoms with hydrogen. Matrix infrared spectra of the MH, MH2, MH3, and MH4 molecules". The Journal of Physical Chemistry. 99 (41): 15004–15010. doi:10.1021/j100041a014. ISSN   0022-3654.

See also