Ammonium iodide

Last updated
Ammonium iodide
The ammonium cation Ammonium.svg
The ammonium cation
The iodide anion I-.svg
The iodide anion
Ammonium-iodide-3D-balls.png
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.031.548 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/HI.H3N/h1H;1H3 Yes check.svgY
    Key: UKFWSNCTAHXBQN-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/HI.H3N/h1H;1H3
    Key: UKFWSNCTAHXBQN-UHFFFAOYAU
  • [I-].[NH4+]
Properties
NH4I
Molar mass 144.94 g/mol
AppearanceWhite crystalline powder
Density 2.51 g/cm3
Melting point 551 °C (1,024 °F; 824 K) (sublimes)
Boiling point 235 °C (455 °F; 508 K) (in vacuum)
155 g/100 mL (0 °C)
172 g/100 mL (20 °C)
250 g/100 mL (100 °C)
−66.0×10−6 cm3/mol
Hazards
NFPA 704 (fire diamond)
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
0
0
Flash point Non-flammable
Related compounds
Other anions
Ammonium fluoride
Ammonium chloride
Ammonium bromide
Other cations
Sodium iodide
Potassium iodide
Phosphonium iodide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Ammonium iodide is the inorganic compound with the formula NH4I. A white solid. It is an ionic compound, although impure samples appear yellow. This salt consists of ammonium cation and an iodide anion. [1] It can be prepared by the action of hydroiodic acid on ammonia. It is easily soluble in water, from which it crystallizes in cubes. It is also soluble in ethanol. Ammonium iodide in aqueous solutions are observed as acidic and display elevated vapor pressures at high temperatures [2]

Contents

Preparation

Ammonium iodide can be made in lab by treating ammonia with hydroiodic acid:

NH3 + HI → NH4I

Uses

Ammonium iodide is used as dietary supplement to treat iodine deficiency. [3]

Properties and Reactions

Ammonium iodide has recently been used in many research studies and experiments.

Vinyl sulfones have been prepared using ammonium iodide,. [4]

Organic reactions are not synthesized with organic solvents due to their increasing detrimental effects on the human body and ecosystem. [5] Many chemists have altered organic reactions to exclude solvents in order to have successful sustainable syntheses. A report was presented on an organic synthesis for the iodination of ketones and aromatic compounds using ammonium iodide and H2O2 (hydrogen peroxide). [5] This resulted in the products' high yields, which were gathered more efficiently, in a shorter duration compared to the use of the abrasive compound: molecular iodine [5]

Related Research Articles

<span class="mw-page-title-main">Iodine</span> Chemical element with atomic number 53 (I)

Iodine is a chemical element; it has symbol I and atomic number 53. The heaviest of the stable halogens, it exists at standard conditions as a semi-lustrous, non-metallic solid that melts to form a deep violet liquid at 114 °C (237 °F), and boils to a violet gas at 184 °C (363 °F). The element was discovered by the French chemist Bernard Courtois in 1811 and was named two years later by Joseph Louis Gay-Lussac, after the Ancient Greek Ιώδης, meaning 'violet'.

In organic chemistry, an aryl halide is an aromatic compound in which one or more hydrogen atoms, directly bonded to an aromatic ring are replaced by a halide. Haloarenes are different from haloalkanes because they exhibit many differences in methods of preparation and properties. The most important members are the aryl chlorides, but the class of compounds is so broad that there are many derivatives and applications.

<span class="mw-page-title-main">Formamide</span> Chemical compound

Formamide is an amide derived from formic acid. It is a colorless liquid which is miscible with water and has an ammonia-like odor. It is chemical feedstock for the manufacture of sulfa drugs and other pharmaceuticals, herbicides and pesticides, and in the manufacture of hydrocyanic acid. It has been used as a softener for paper and fiber. It is a solvent for many ionic compounds. It has also been used as a solvent for resins and plasticizers. Some astrobiologists suggest that it may be an alternative to water as the main solvent in other forms of life.

<span class="mw-page-title-main">Phosphonium</span> Family of polyatomic cations containing phosphorus

In chemistry, the term phosphonium describes polyatomic cations with the chemical formula PR+
4
. These cations have tetrahedral structures. The salts are generally colorless or take the color of the anions.

<span class="mw-page-title-main">Phosphorus triiodide</span> Chemical compound

Phosphorus triiodide (PI3) is an inorganic compound with the formula PI3. A red solid, it is too unstable to be stored for long periods of time; it is, nevertheless, commercially available. It is widely used in organic chemistry for converting alcohols to alkyl iodides. It is also a powerful reducing agent.

<span class="mw-page-title-main">Hydrogen iodide</span> Chemical compound

Hydrogen iodide (HI) is a diatomic molecule and hydrogen halide. Aqueous solutions of HI are known as hydroiodic acid or hydriodic acid, a strong acid. Hydrogen iodide and hydroiodic acid are, however, different in that the former is a gas under standard conditions, whereas the other is an aqueous solution of the gas. They are interconvertible. HI is used in organic and inorganic synthesis as one of the primary sources of iodine and as a reducing agent.

<span class="mw-page-title-main">Sodium iodide</span> Chemical compound

Sodium iodide (chemical formula NaI) is an ionic compound formed from the chemical reaction of sodium metal and iodine. Under standard conditions, it is a white, water-soluble solid comprising a 1:1 mix of sodium cations (Na+) and iodide anions (I) in a crystal lattice. It is used mainly as a nutritional supplement and in organic chemistry. It is produced industrially as the salt formed when acidic iodides react with sodium hydroxide. It is a chaotropic salt.

<span class="mw-page-title-main">Palladium(II) acetate</span> Chemical compound

Palladium(II) acetate is a chemical compound of palladium described by the formula [Pd(O2CCH3)2]n, abbreviated [Pd(OAc)2]n. It is more reactive than the analogous platinum compound. Depending on the value of n, the compound is soluble in many organic solvents and is commonly used as a catalyst for organic reactions.

<span class="mw-page-title-main">Copper(I) iodide</span> Chemical compound

Copper(I) iodide is an inorganic compound with the chemical formula CuI. It is also known as cuprous iodide. It is useful in a variety of applications ranging from organic synthesis to cloud seeding.

An inorganic nonaqueous solvent is a solvent other than water, that is not an organic compound. These solvents are used in chemical research and industry for reactions that cannot occur in aqueous solutions or require a special environment. Inorganic nonaqueous solvents can be classified into two groups, protic solvents and aprotic solvents. Early studies on inorganic nonaqueous solvents evaluated ammonia, hydrogen fluoride, sulfuric acid, as well as more specialized solvents, hydrazine, and selenium oxychloride.

<span class="mw-page-title-main">Nickel(II) iodide</span> Chemical compound

Nickel(II) iodide is an inorganic compound with the formula NiI2. This paramagnetic black solid dissolves readily in water to give bluish-green solutions, from which crystallizes the aquo complex [Ni(H2O)6]I2 (image above). This bluish-green colour is typical of hydrated nickel(II) compounds. Nickel iodides find some applications in homogeneous catalysis.

<span class="mw-page-title-main">Antimony triiodide</span> Chemical compound

Antimony triiodide is the chemical compound with the formula SbI3. This ruby-red solid is the only characterized "binary" iodide of antimony, i.e. the sole compound isolated with the formula SbxIy. It contains antimony in its +3 oxidation state. Like many iodides of the heavier main group elements, its structure depends on the phase. Gaseous SbI3 is a molecular, pyramidal species as anticipated by VSEPR theory. In the solid state, however, the Sb center is surrounded by an octahedron of six iodide ligands, three of which are closer and three more distant. For the related compound BiI3, all six Bi—I distances are equal.

Iodine compounds are compounds containing the element iodine. Iodine can form compounds using multiple oxidation states. Iodine is quite reactive, but it is much less reactive than the other halogens. For example, while chlorine gas will halogenate carbon monoxide, nitric oxide, and sulfur dioxide, iodine will not do so. Furthermore, iodination of metals tends to result in lower oxidation states than chlorination or bromination; for example, rhenium metal reacts with chlorine to form rhenium hexachloride, but with bromine it forms only rhenium pentabromide and iodine can achieve only rhenium tetraiodide. By the same token, however, since iodine has the lowest ionisation energy among the halogens and is the most easily oxidised of them, it has a more significant cationic chemistry and its higher oxidation states are rather more stable than those of bromine and chlorine, for example in iodine heptafluoride.

<span class="mw-page-title-main">Thiophosphoryl chloride</span> Chemical compound

Thiophosphoryl chloride is an inorganic compound with the chemical formula PSCl3. It is a colorless pungent smelling liquid that fumes in air. It is synthesized from phosphorus chloride and used to thiophosphorylate organic compounds, such as to produce insecticides.

Tin(IV) iodide, also known as stannic iodide, is the chemical compound with the formula SnI4. This tetrahedral molecule crystallizes as a bright orange solid that dissolves readily in nonpolar solvents such as benzene.

<span class="mw-page-title-main">Magnesium iodide</span> Chemical compound

Magnesium iodide is an inorganic compound with the chemical formula MgI2. It forms various hydrates MgI2·xH2O. Magnesium iodide is a salt of magnesium and hydrogen iodide. These salts are typical ionic halides, being highly soluble in water.

<span class="mw-page-title-main">Rubidium iodide</span> Chemical compound

Rubidium iodide is a salt of rubidium and iodine, with the chemical formula RbI. It is a white solid with a melting point of 642 °C.

<span class="mw-page-title-main">Arsenic triiodide</span> Chemical compound

Arsenic triiodide is the inorganic compound with the formula AsI3. It is an orange to dark red solid that readily sublimes. It is a pyramidal molecule that is useful for preparing organoarsenic compounds.

Iron(II) iodide is an inorganic compound with the chemical formula FeI2. It is used as a catalyst in organic reactions.

Neodymium(III) iodide is an inorganic salt of iodine and neodymium with the formula NdI3. Neodymium uses the +3 oxidation state in the compound. The anhydrous compound is a green powdery solid at room temperature.

References

  1. Holleman, A. F.; Wiberg, E. Inorganic Chemistry Academic Press: San Diego, 2001. ISBN   0-12-352651-5.
  2. Kirk-Othmer, ed. (2001-01-26). Kirk-Othmer Encyclopedia of Chemical Technology (1 ed.). Wiley. doi:10.1002/0471238961.0113131523051920.a01.pub2. ISBN   978-0-471-48494-3.
  3. "Ammonium Iodide: Benefits, Risks, and Safety in Dietary Supplements". www.digicomply.com. Retrieved 2023-11-21.
  4. Gao, Xiaofang; Pan, Xiaojun; Gao, Jian; Huang, Huawen; Yuan, Gaoqing; Li, Yingwei (2015). "Ammonium iodide-induced sulfonylation of alkenes with DMSO and water toward the synthesis of vinyl methyl sulfones". Chemical Communications. 51 (1): 210–212. doi:10.1039/C4CC07606K. PMID   25406694.
  5. 1 2 3 Kulkarni, Pramod; Kondhare, Dasharath; Varala, Ravi; Zubaidha, Pudukulathan (2013). "Cyclization of 2′-hydroxychalcones to flavones using ammonium iodide as an iodine source: An eco-friendly approach". Journal of the Serbian Chemical Society. 78 (7): 909–916. doi: 10.2298/jsc120901119k . ISSN   0352-5139.