Ammonium perfluorononanoate

Last updated
Ammonium perfluorononanoate
Ammonium perfluorononanoate.svg
Names
IUPAC name
Heptadecafluorononanoic acid ammoniate (1:1)
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.242.185 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
  • InChI=1S/C9HF17O2.H3N/c10-2(11,1(27)28)3(12,13)4(14,15)5(16,17)6(18,19)7(20,21)8(22,23)9(24,25)26;/h(H,27,28);1H3
    Key: ORBBVPFDROYXQS-UHFFFAOYSA-N
  • InChI=1/C9HF17O2.H3N/c10-2(11,1(27)28)3(12,13)4(14,15)5(16,17)6(18,19)7(20,21)8(22,23)9(24,25)26;/h(H,27,28);1H3
    Key: ORBBVPFDROYXQS-UHFFFAOYAU
  • FC(F)(C(F)(F)C(=O)O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F.N
Properties
C9H4F17NO2
Molar mass 481.106
Density 1.753 g/mL
Boiling point 196 °C (385 °F; 469 K)
Surface tension:
CMC
~8.0 mmol/L [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Ammonium perfluorononanoate (APFN) is an anionic surfactant that in water forms liquid crystalline phases (Lyotropic liquid crystal). It is the ammonium salt of perfluorononanoic acid.

Contents

The phase diagram of APFN/H2O system is delineated by the presence of a lamellar phase and a nematic phase with awide isotropic solution. The nematic phase is of the type I, and the aggregates have a positive and diamagnetic anisotropy. In the presence of a magnetic field, the aggregates align parallel to the field direction. The change of phase at the lamellar-nematic temperature has been ascribed to order-disorder transitions.

MLV Formation

It has recently been shown that the lamellar phase of the APFN/2H2O system form multilamellar vesicles under shear rate. [2]

Restrictions

In 2020, a California bill was passed banning APFN as an intentionally added ingredient from cosmetics. [3]

Related Research Articles

<span class="mw-page-title-main">Liquid crystal</span> State of matter with properties of both conventional liquids and crystals

Liquid crystal (LC) is a state of matter whose properties are between those of conventional liquids and those of solid crystals. For example, a liquid crystal can flow like a liquid, but its molecules may be oriented in a common direction as in solid. There are many types of LC phases, which can be distinguished by their optical properties. The contrasting textures arise due to molecules within one area of material ("domain") being oriented in the same direction but different areas having different orientations. An LC material may not always be in an LC state of matter.

<span class="mw-page-title-main">Surfactant</span> Substance that lowers the surface tension between a liquid and another material

Surfactants are chemical compounds that decrease the surface tension or interfacial tension between two liquids, a liquid and a gas, or a liquid and a solid. The word "surfactant" is a blend of surface-active agent, coined c. 1950. As they consist of a water-repellent and a water-attracting part, they enable water and oil to mix; they can form foam and facilitate the detachment of dirt.

<span class="mw-page-title-main">Lipid bilayer</span> Membrane of two layers of lipid molecules

The lipid bilayer is a thin polar membrane made of two layers of lipid molecules. These membranes are flat sheets that form a continuous barrier around all cells. The cell membranes of almost all organisms and many viruses are made of a lipid bilayer, as are the nuclear membrane surrounding the cell nucleus, and membranes of the membrane-bound organelles in the cell. The lipid bilayer is the barrier that keeps ions, proteins and other molecules where they are needed and prevents them from diffusing into areas where they should not be. Lipid bilayers are ideally suited to this role, even though they are only a few nanometers in width, because they are impermeable to most water-soluble (hydrophilic) molecules. Bilayers are particularly impermeable to ions, which allows cells to regulate salt concentrations and pH by transporting ions across their membranes using proteins called ion pumps.

<span class="mw-page-title-main">Liposome</span> Composite structures made of phospholipids and may contain small amounts of other molecules

A liposome is a small artificial vesicle, spherical in shape, having at least one lipid bilayer. Due to their hydrophobicity and/or hydrophilicity, biocompatibility, particle size and many other properties, liposomes can be used as drug delivery vehicles for administration of pharmaceutical drugs and nutrients, such as lipid nanoparticles in mRNA vaccines, and DNA vaccines. Liposomes can be prepared by disrupting biological membranes.

A mesogen is a compound that displays liquid crystal properties. Mesogens can be described as disordered solids or ordered liquids because they arise from a unique state of matter that exhibits both solid- and liquid-like properties called the liquid crystalline state. This liquid crystalline state (LC) is called the mesophase and occurs between the crystalline solid (Cr) state and the isotropic liquid (Iso) state at distinct temperature ranges.

A biaxial nematic is a spatially homogeneous liquid crystal with three distinct optical axes. This is to be contrasted to a simple nematic, which has a single preferred axis, around which the system is rotationally symmetric. The symmetry group of a biaxial nematic is i.e. that of a rectangular right parallelepiped, having 3 orthogonal axes and three orthogonal mirror planes. In a frame co-aligned with optical axes the second rank order parameter tensor of a biaxial nematic has the form

<span class="mw-page-title-main">Sonication</span> Application of sound energy

Sonication is the act of applying sound energy to agitate particles in a sample, for various purposes such as the extraction of multiple compounds from plants, microalgae and seaweeds. Ultrasonic frequencies (> 20 kHz) are usually used, leading to the process also being known as ultrasonication or ultra-sonication.

A lamella in biology refers to a thin layer, membrane or plate of tissue. This is a very broad definition, and can refer to many different structures. Any thin layer of organic tissue can be called a lamella and there is a wide array of functions an individual layer can serve. For example, an intercellular lipid lamella is formed when lamellar disks fuse to form a lamellar sheet. It is believed that these disks are formed from vesicles, giving the lamellar sheet a lipid bilayer that plays a role in water diffusion.

<span class="mw-page-title-main">Cationic liposome</span>

Cationic liposomes are spherical structures that contain positively charged lipids. Cationic liposomes can vary in size between 40 nm and 500 nm, and they can either have one lipid bilayer (monolamellar) or multiple lipid bilayers (multilamellar). The positive charge of the phospholipids allows cationic liposomes to form complexes with negatively charged nucleic acids through ionic interactions. Upon interacting with nucleic acids, cationic liposomes form clusters of aggregated vesicles. These interactions allow cationic liposomes to condense and encapsulate various therapeutic and diagnostic agents in their aqueous compartment or in their lipid bilayer. These cationic liposome-nucleic acid complexes are also referred to as lipoplexes. Due to the overall positive charge of cationic liposomes, they interact with negatively charged cell membranes more readily than classic liposomes. This positive charge can also create some issues in vivo, such as binding to plasma proteins in the bloodstream, which leads to opsonization. These issues can be reduced by optimizing the physical and chemical properties of cationic liposomes through their lipid composition. Cationic liposomes are increasingly being researched for use as delivery vectors in gene therapy due to their capability to efficiently transfect cells. A common application for cationic liposomes is cancer drug delivery.

Within chemical compound surfactants, Pentaethylene glycol monododecyl ether (C12E5) is a nonionic surfactant. It is formed by the ethoxylation chemical reaction of dodecanol to give a material with 5 repeat units of ethylene glycol.

<span class="mw-page-title-main">Lipid polymorphism</span>

Polymorphism in biophysics is the ability of lipids to aggregate in a variety of ways, giving rise to structures of different shapes, known as "phases". This can be in the form of spheres of lipid molecules (micelles), pairs of layers that face one another, a tubular arrangement (hexagonal), or various cubic phases. More complicated aggregations have also been observed, such as rhombohedral, tetragonal and orthorhombic phases.

<span class="mw-page-title-main">Lyotropic liquid crystal</span>

Lyotropic liquid crystals result when fat-loving and water-loving chemical compounds known as amphiphiles dissolve into a solution that behaves both like a liquid and a solid crystal. This liquid crystalline mesophase includes everyday mixtures like soap and water.

A blue phase mode LCD is a liquid crystal display (LCD) technology that uses highly twisted cholesteric phases in a blue phase. It was first proposed in 2007 to obtain a better display of moving images with, for example, frame rates of 100–120 Hz to improve the temporal response of LCDs. This operational mode for LCDs also does not require anisotropic alignment layers and thus theoretically simplifies the LCD manufacturing process.

<span class="mw-page-title-main">Ethanol-induced non-lamellar phases in phospholipids</span>

The presence of ethanol can lead to the formations of non-lamellar phases also known as non-bilayer phases. Ethanol has been recognized as being an excellent solvent in an aqueous solution for inducing non-lamellar phases in phospholipids. The formation of non-lamellar phases in phospholipids is not completely understood, but it is significant that this amphiphilic molecule is capable of doing so. The formation of non-lamellar phases is significant in biomedical studies which include drug delivery, the transport of polar and non-polar ions using solvents capable of penetrating the biomembrane, increasing the elasticity of the biomembrane when it is being disrupted by unwanted substances and functioning as a channel or transporter of biomaterial.

Dimethyldioctadecylammonium bromide is a double-chained quaternary ammonium surfactant that forms unilamellar vesicles (ULVs) in water. Among various preparation methods, the ‘‘hot-water” method offers a simple procedure to prepare DODAB cationic vesicles by simply dissolving the DODAB in hot water above 50 °C, i.e., chain melting (main) transition, Tm. In general, the DSC thermograms of the unsonicated DODAB dispersions are dominated by two endotherms; the pre- and main transition peaks. Moreover, in literature reported the presence of a third endotherm at 52.2 °C. The main transition (Tm) is ascribed to gel to liquid-crystalline phase transition in which the alkyl chains transform from solidlike to liquid-like state.

<span class="mw-page-title-main">Antal Jákli</span> Hungarian-American physicist (born 1956)

Antal I. "Tony" Jákli is a Hungarian-American physicist and professor of chemical physics at Kent State University. He is known for his work with bent-core, flexoelectric, and ferroelectric liquid crystals.

A unilamellar liposome is a spherical liposome, a vesicle, bounded by a single bilayer of an amphiphilic lipid or a mixture of such lipids, containing aqueous solution inside the chamber. Unilamellar liposomes are used to study biological systems and to mimic cell membranes, and are classified into three groups based on their size: small unilamellar liposomes/vesicles (SUVs) that with a size range of 20–100 nm, large unilamellar liposomes/vesicles (LUVs) with a size range of 100–1000 nm and giant unilamellar liposomes/vesicles (GUVs) with a size range of 1–200 µm. GUVs are mostly used as models for biological membranes in research work. Animal cells are 10–30 µm and plant cells are typically 10–100 µm. Even smaller cell organelles such as mitochondria are typically 1–2 µm. Therefore, a proper model should account for the size of the specimen being studied. In addition, the size of vesicles dictates their membrane curvature which is an important factor in studying fusion proteins. SUVs have a higher membrane curvature and vesicles with high membrane curvature can promote membrane fusion faster than vesicles with lower membrane curvature such as GUVs.

<span class="mw-page-title-main">Lamellar phase</span>

Lamellar phase refers generally to packing of polar-headed long chain nonpolar-tail molecules in an environment of bulk polar liquid, as sheets of bilayers separated by bulk liquid. In biophysics, polar lipids pack as a liquid crystalline bilayer, with hydrophobic fatty acyl long chains directed inwardly and polar headgroups of lipids aligned on the outside in contact with water, as a 2-dimensional flat sheet surface. Under transmission electron microscope (TEM), after staining with polar headgroup reactive chemical osmium tetroxide, lamellar lipid phase appears as two thin parallel dark staining lines/sheets, constituted by aligned polar headgroups of lipids. 'Sandwiched' between these two parallel lines, there exists one thicker line/sheet of non-staining closely packed layer of long lipid fatty acyl chains. This TEM-appearance became famous as Robertson's unit membrane - the basis of all biological membranes, and structure of lipid bilayer in unilamellar liposomes. In multilamellar liposomes, many such lipid bilayer sheets are layered concentrically with water layers in between.

Didier Roux is a French physicochemist. He is director of research and innovation at Saint-Gobain and a member of the French Academy of sciences and the Academy of Technology.

<span class="mw-page-title-main">Yuriy Reznikov</span> Ukrainian physicist

Yuriy Reznikov was a Ukrainian physicist, Head of the Department of Crystals at NASU Institute of Physics and a world-renown expert in the field of liquid crystals. He is known for his work on photoalignment, "giant" optical non-linearity of liquid crystals and nano-colloids.

References

  1. Ivanchev, S. S.; Likhomanov, V. S.; Primachenko, O. N.; Khaikin, S. Ya.; Barabanov, V. G.; Kornilov, V. V.; Odinokov, A. S.; Kulvelis, Yu. V.; Lebedev, V. T.; Trunov, V. A. (2012). "Scientific principles of a new process for manufacturing perfluorinated polymer electrolytes for fuel cells". Petroleum Chemistry. 52 (7): 453–461. doi:10.1134/S0965544112070067. ISSN   0965-5441. S2CID   95976747.
  2. Coppola, Luigi; Gentile, Luigi; Nicotera, Isabella; Rossi, Cesare Oliviero; Ranieri, Giuseppe Antonio (2010). "Evidence of Formation of Ammonium Perfluorononanoate/2H2O Multilamellar Vesicles: Morphological Analysis by Rheology and Rheo-2H NMR Experiments". Langmuir. 26 (24): 19060–5. doi:10.1021/la102887e. PMID   21073179.
  3. "Assembly Bill No. 2762". State of California. September 30, 2020. Retrieved 10 October 2020.