Polonium diiodide

Last updated
Polonium diiodide
Identifiers
3D model (JSmol)
PubChem CID
  • InChI=1S/2HI.Po/h2*1H;/q;;+2/p-2
    Key: KSYSHPVSQUKRJA-UHFFFAOYSA-L
  • I[Po]I
Properties
I2Po
Molar mass 463 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Polonium diiodide is a binary inorganic compound of polonium metal and iodine with the chemical formula PoI2. [1]

Related Research Articles

<span class="mw-page-title-main">Chalcogen</span> Group of chemical elements

The chalcogens are the chemical elements in group 16 of the periodic table. This group is also known as the oxygen family. Group 16 consists of the elements oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and the radioactive elements polonium (Po) and livermorium (Lv). Often, oxygen is treated separately from the other chalcogens, sometimes even excluded from the scope of the term "chalcogen" altogether, due to its very different chemical behavior from sulfur, selenium, tellurium, and polonium. The word "chalcogen" is derived from a combination of the Greek word khalkόs (χαλκός) principally meaning copper, and the Latinized Greek word genēs, meaning born or produced.

<span class="mw-page-title-main">Polonium</span> Chemical element with atomic number 84 (Po)

Polonium is a chemical element; it has symbol Po and atomic number 84. A rare and highly radioactive metal with no stable isotopes, polonium is a chalcogen and chemically similar to selenium and tellurium, though its metallic character resembles that of its horizontal neighbors in the periodic table: thallium, lead, and bismuth. Due to the short half-life of all its isotopes, its natural occurrence is limited to tiny traces of the fleeting polonium-210 in uranium ores, as it is the penultimate daughter of natural uranium-238. Though longer-lived isotopes exist, such as the 124 years half-life of polonium-209, they are much more difficult to produce. Today, polonium is usually produced in milligram quantities by the neutron irradiation of bismuth. Due to its intense radioactivity, which results in the radiolysis of chemical bonds and radioactive self-heating, its chemistry has mostly been investigated on the trace scale only.

<span class="mw-page-title-main">Pleochroic halo</span> Geological phenomenon

A pleochroic halo, or radiohalo, is a microscopic, spherical shell of discolouration (pleochroism) within minerals such as biotite that occurs in granite and other igneous rocks. The halo is a zone of radiation damage caused by the inclusion of minute radioactive crystals within the host crystal structure. The inclusions are typically zircon, apatite, or titanite which can accommodate uranium or thorium within their crystal structures. One explanation is that the discolouration is caused by alpha particles emitted by the nuclei; the radius of the concentric shells are proportional to the particles' energy.

Livermorium is a synthetic chemical element; it has symbol Lv and atomic number 116. It is an extremely radioactive element that has only been created in a laboratory setting and has not been observed in nature. The element is named after the Lawrence Livermore National Laboratory in the United States, which collaborated with the Joint Institute for Nuclear Research (JINR) in Dubna, Russia, to discover livermorium during experiments conducted between 2000 and 2006. The name of the laboratory refers to the city of Livermore, California, where it is located, which in turn was named after the rancher and landowner Robert Livermore. The name was adopted by IUPAC on May 30, 2012. Six isotopes of livermorium are known, with mass numbers of 288–293 inclusive; the longest-lived among them is livermorium-293 with a half-life of about 80 milliseconds. A seventh possible isotope with mass number 294 has been reported but not yet confirmed.

Polonium-210 (210Po, Po-210, historically radium F) is an isotope of polonium. It undergoes alpha decay to stable 206Pb with a half-life of 138.376 days (about 4+12 months), the longest half-life of all naturally occurring polonium isotopes (210–218Po). First identified in 1898, and also marking the discovery of the element polonium, 210Po is generated in the decay chain of uranium-238 and radium-226. 210Po is a prominent contaminant in the environment, mostly affecting seafood and tobacco. Its extreme toxicity is attributed to intense radioactivity, mostly due to alpha particles, which easily cause radiation damage, including cancer in surrounding tissue. The specific activity of 210
Po
is 166 TBq/g, i.e., 1.66 × 1014 Bq/g. At the same time, 210Po is not readily detected by common radiation detectors, because its gamma rays have a very low energy. Therefore, 210
Po
can be considered as a quasi-pure alpha emitter.

<span class="mw-page-title-main">Radiochemistry</span> Chemistry of radioactive materials

Radiochemistry is the chemistry of radioactive materials, where radioactive isotopes of elements are used to study the properties and chemical reactions of non-radioactive isotopes. Much of radiochemistry deals with the use of radioactivity to study ordinary chemical reactions. This is very different from radiation chemistry where the radiation levels are kept too low to influence the chemistry.

A modulated neutron initiator is a neutron source capable of producing a burst of neutrons on activation. It is a crucial part of some nuclear weapons, as its role is to "kick-start" the chain reaction at the optimal moment when the configuration is prompt critical. It is also known as an internal neutron initiator. The initiator is typically placed in the center of the plutonium pit, and is activated by impact of the converging shock wave.

<span class="mw-page-title-main">Polonium hydride</span> Chemical compound

Polonium hydride (also known as polonium dihydride, hydrogen polonide, or polane) is a chemical compound with the formula PoH2. It is a liquid at room temperature, the second hydrogen chalcogenide with this property after water. It is very unstable chemically and tends to decompose into elemental polonium and hydrogen. It is a volatile and very labile compound, from which many polonides can be derived. Additionally, it is radioactive.

<span class="mw-page-title-main">Magnesium polonide</span> Chemical compound

Magnesium polonide (MgPo) is a salt of magnesium and polonium. It is a polonide, a set of very chemically stable compounds of polonium.

<span class="mw-page-title-main">Lithium polonide</span> Chemical compound

Lithium polonide is a chemical compound with the formula Li2Po. It is a polonide, a set of very chemically stable compounds of polonium.

<span class="mw-page-title-main">Sodium polonide</span> Chemical compound

Sodium polonide is a radioactive chemical compound with the formula Na2Po. This salt is a polonide, a set of very chemically stable compounds of polonium. Due to the difference in electronegativity (ΔEN) between sodium and polonium and the slight non-metallic character of polonium, it is intermediate between intermetallic phases and ionic compounds.

<span class="mw-page-title-main">Potassium polonide</span> Chemical compound

Potassium polonide is a chemical compound with the formula K2Po. It is a polonide, a set of very chemically stable compounds of polonium.

<span class="mw-page-title-main">Samarium(II) bromide</span> Chemical compound

Samarium(II) bromide is an inorganic compound with the chemical formula SmBr
2
. It is a brown solid that is insoluble in most solvents but degrades readily in air.

Samarium(III) iodide is an inorganic compound, a salt of samarium and hydroiodic acid with the chemical formula SmI
3
.

Polonium tetranitrate is an inorganic compound, a salt of polonium and nitric acid with the chemical formula Po(NO3)4. The compound is radioactive, forms white crystals.

Polonium sulfide is an inorganic compound of polonium and sulfur with the chemical formula PoS. The compound is radioactive and forms black crystals.

Polonium tetraiodide is a binary inorganic compound of polonium and iodine with the chemical formula PoI
4
. The compound forms volatile black crystals.

<span class="mw-page-title-main">Praseodymium diiodide</span> Chemical compound

Praseodymium diiodide is a chemical compound with the empirical formula of PrI2, consisting of praseodymium and iodine. It is an electride, with the ionic formula of Pr3+(I)2e, and therefore not a true praseodymium(II) compound.

<span class="mw-page-title-main">Cerium diiodide</span> Chemical compound

Cerium diiodide is an iodide of cerium, with the chemical formula of CeI2.

<span class="mw-page-title-main">Disulfur diiodide</span> Chemical compound

Disulfur diiodide is an unstable inorganic chemical compound with the chemical formula S2I2. It is a red-brown solid that decomposes above −30 °C to elemental sulfur and iodine.

References

  1. "WebElements Periodic Table » Polonium » polonium diiodide". WebElements. Retrieved 1 April 2024.