Mavlyanovite

Last updated
Mavlyanovite
General
Category Mineral
Formula
(repeating unit)
Mn5Si3
IMA symbol Mav [1]
Strunz classification 01.BB.05
Dana classification01.01.23.06
Crystal system Hexagonal
Space group P63/mcm
Unit cell a = 6.8971, c = 4.8075, Z = 2; V = 198.05
Structure
Identification
Colourgrey
Fracture conchoidal
Mohs scale hardness7
Luster metallic
Streak dark grey
Diaphaneity opaque
Density 6.02

Mavlyanovite is a manganese-silicon mineral with formula Mn5Si3. [2] It was named after Gani Mavlyanov, an Uzbek geologist who lived from 1910 to 1988.

Transition metal silicides represent a rich variety of intermetallic compounds with specific crystal and electronic structures owing to the strong interaction between metals and silicon. Recently, transition metal silicides have gained considerable attention from the scientific community because of their unique physicochemical properties such as high thermal stability, excellent electronic conductivity, low electrical resistivity, high strength, good thermodynamic stability, good oxidation, and corrosion resistance. With these favorable properties, transition metal silicides are potential candidates for various nanotechnological applications such as electronics, spintronics, thermoelectrics, and solar energy harvesting. Among all transition metal silicides, manganese silicides have been investigated extensively because of their complex structural diversity and fascinating physical properties. Manganese silicides possess seven thermodynamically stable phases, namely: MnSi1.7 (tetragonal), MnSi (cubic), Mn5Si3 (hexagonal), Mn5Si2 (tetragonal), Mn3Si (cubic), Mn4Si (rhombohedral), and Mn6Si (rhombohedral). Each of these phases results in different magnetic and thermoelectric properties either in microscopic or microscopic scales. For instance, MnSi is an excellent magnetic contact material for magnetic applications and spintronics such as spin field-effect transistors owing to its simple cubic crystal structure without space inversion symmetry. Among the manganese silicide materials, MnSi1.7, which is a higher manganese silicide, has attracted most interest in the researches for its excellent thermoelectric properties such as low thermal conductivity (2–4 W/m.K), high Seebeck coefficient (>200 mV/K at ~700 K) and estimable figure of merit (up to 0.7–0.8). Mn5Si3 is one of the promising materials for spintronic applications because of its hexagonal structure, and has the potential to create high magnetocrystalline anisotropy with novel spin-electronic properties. In addition, Mn5Si3 has a high melting point of 2800 K, indicating that it is a favorable candidate for high-temperature structural applications. [3]

Related Research Articles

<span class="mw-page-title-main">Crystal structure</span> Ordered arrangement of atoms, ions, or molecules in a crystalline material

In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions, or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric patterns that repeat along the principal directions of three-dimensional space in matter.

<span class="mw-page-title-main">Zirconium dioxide</span> Chemical compound

Zirconium dioxide, sometimes known as zirconia, is a white crystalline oxide of zirconium. Its most naturally occurring form, with a monoclinic crystalline structure, is the mineral baddeleyite. A dopant stabilized cubic structured zirconia, cubic zirconia, is synthesized in various colours for use as a gemstone and a diamond simulant.

<span class="mw-page-title-main">Thermoelectric materials</span> Materials whose temperature variance leads to voltage change

Thermoelectric materials show the thermoelectric effect in a strong or convenient form.

<span class="mw-page-title-main">Cristobalite</span> Silica mineral, polymorph of quartz

Cristobalite is a mineral polymorph of silica that is formed at very high temperatures. It has the same chemical formula as quartz, SiO2, but a distinct crystal structure. Both quartz and cristobalite are polymorphs with all the members of the quartz group, which also include coesite, tridymite and stishovite. It is named after Cerro San Cristóbal in Pachuca Municipality, Hidalgo, Mexico.

<span class="mw-page-title-main">Tantalite</span> Tantalum ore

The mineral group tantalite [(Fe, Mn)Ta2O6] is the primary source of the chemical element tantalum, a corrosion (heat and acid) resistant metal. It is chemically similar to columbite, and the two are often grouped together as a semi-singular mineral called coltan or "columbite-tantalite" in many mineral guides. However, tantalite has a much greater specific gravity than columbite (8.0+ compared to columbite's 5.2). Iron-rich tantalite is the mineral tantalite-(Fe) or ferrotantalite and manganese-rich is tantalite-(Mn) or manganotantalite.

Magnetic semiconductors are semiconductor materials that exhibit both ferromagnetism and useful semiconductor properties. If implemented in devices, these materials could provide a new type of control of conduction. Whereas traditional electronics are based on control of charge carriers, practical magnetic semiconductors would also allow control of quantum spin state. This would theoretically provide near-total spin polarization, which is an important property for spintronics applications, e.g. spin transistors.

<span class="mw-page-title-main">Magnesium silicide</span> Chemical compound

Magnesium silicide, Mg2Si, is an inorganic compound consisting of magnesium and silicon. As-grown Mg2Si usually forms black crystals; they are semiconductors with n-type conductivity and have potential applications in thermoelectric generators.

<span class="mw-page-title-main">Silicide</span> Chemical compound that combines silicon and a more electropositive element

A silicide is a type of chemical compound that combines silicon and a usually more electropositive element.

<span class="mw-page-title-main">Heusler compound</span>

Heusler compounds are magnetic intermetallics with face-centered cubic crystal structure and a composition of XYZ (half-Heuslers) or X2YZ (full-Heuslers), where X and Y are transition metals and Z is in the p-block. The term derives from the name of German mining engineer and chemist Friedrich Heusler, who studied such a compound (Cu2MnAl) in 1903. Many of these compounds exhibit properties relevant to spintronics, such as magnetoresistance, variations of the Hall effect, ferro-, antiferro-, and ferrimagnetism, half- and semimetallicity, semiconductivity with spin filter ability, superconductivity, topological band structure and are actively studied as Thermoelectric materials. Their magnetism results from a double-exchange mechanism between neighboring magnetic ions. Manganese, which sits at the body centers of the cubic structure, was the magnetic ion in the first Heusler compound discovered. (See the Bethe–Slater curve for details of why this happens.)

<span class="mw-page-title-main">Birnessite</span> Manganese hydroxide mineral

Birnessite (nominally MnO2·nH2O), also known as δ-MnO2, is a hydrous manganese dioxide mineral with a chemical formula of Na0.7Ca0.3Mn7O14·2.8H2O. It is the main manganese mineral species at the Earth's surface, and commonly occurs as fine-grained, poorly crystallized aggregates in soils, sediments, grain and rock coatings (e.g., desert varnish), and marine ferromanganese nodules and crusts. It was discovered at Birness, Aberdeenshire, Scotland.

<span class="mw-page-title-main">Indium(III) oxide</span> Chemical compound

Indium(III) oxide (In2O3) is a chemical compound, an amphoteric oxide of indium.

<span class="mw-page-title-main">Lanthanum strontium manganite</span>

Lanthanum strontium manganite (LSM or LSMO) is an oxide ceramic material with the general formula La1−xSrxMnO3, where x describes the doping level.

<span class="mw-page-title-main">Manganese(III) oxide</span> Chemical compound

Manganese(III) oxide is a chemical compound with the formula Mn2O3. It occurs in nature as the mineral bixbyite (recently changed to bixbyite-(Mn)) and is used in the production of ferrites and thermistors.

Brownleeite is a silicide mineral with chemical formula MnSi. It was discovered by researchers of the Johnson Space Center in Houston while analyzing the Pi Puppid particle shower of the comet 26P/Grigg-Skjellerup. The only other known natural manganese silicide is mavlyanovite, Mn5Si3.

<span class="mw-page-title-main">Binary compounds of silicon</span> Any binary chemical compound containing just silicon and another chemical element

Binary compounds of silicon are binary chemical compounds containing silicon and one other chemical element. Technically the term silicide is reserved for any compounds containing silicon bonded to a more electropositive element. Binary silicon compounds can be grouped into several classes. Saltlike silicides are formed with the electropositive s-block metals. Covalent silicides and silicon compounds occur with hydrogen and the elements in groups 10 to 17.

Antiperovskites is a type of crystal structure similar to the perovskite structure that is common in nature. The key difference is that the positions of the cation and anion constituents are reversed in the unit cell structure. In contrast to perovskite, antiperovskite compounds consist of two types of anions coordinated with one type of cation. Antiperovskite compounds are an important class of materials because they exhibit interesting and useful physical properties not found in perovskite materials, including as electrolytes in solid-state batteries.

<span class="mw-page-title-main">Oxyselenide</span> Class of chemical compounds

Oxyselenides are a group of chemical compounds that contain oxygen and selenium atoms. Oxyselenides can form a wide range of structures in compounds containing various transition metals, and thus can exhibit a wide range of properties. Most importantly, oxyselenides have a wide range of thermal conductivity, which can be controlled with changes in temperature in order to adjust their thermoelectric performance. Current research on oxyselenides indicates their potential for significant application in electronic materials.

<span class="mw-page-title-main">Manganese disilicide</span> Chemical compound

Manganese disilicide (MnSi2) is an intermetallic compound, a silicide of manganese. It is a non-stoichiometric compound, with a silicon deficiency expressed as MnSi2–x. Crystal structures of many MnSi2–x compounds resemble a chimney ladder and are called Nowotny phases. They include MnSi2 (x=0), Mn4Si7 (x=0.250), Mn11Si19 (x=0.273), Mn15Si26 (x=0.267) and Mn27Si47 (x=0.259). These phases have very similar unit cells whose length varies from 1.75 nm for MnSi2 or Mn4Si7, which have almost the same structures, to 11.8 nm for Mn27Si47.

<span class="mw-page-title-main">Manganese monosilicide</span> Chemical compound

Manganese monosilicide (MnSi) is an intermetallic compound, a silicide of manganese. It occurs in cosmic dust as the mineral brownleeite. MnSi has a cubic crystal lattice with no inversion center; therefore its crystal structure is helical, with right-hand and left-hand chiralities.

<span class="mw-page-title-main">Manganese arsenide</span> Chemical compound

Manganese arsenide (MnAs) is an intermetallic compound, an arsenide of manganese. It forms ferromagnetic crystals with hexagonal (NiAs-type) crystal structure, which convert to the paramagnetic orthorhombic β-phase upon heating to 45 °C (113 °F). MnAs has potential applications in spintronics, for electrical spin injection into GaAs and Si based devices.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. Yusupov, R. G.; Stanley, C. J.; Welch, M. D.; Spratt, J.; Cressey, G.; Rumsey, M. S.; Seltmann, R.; Igamberdiev, E. (February 2009). "Mavlyanovite, Mn 5 Si 3 : a new mineral species from a lamproite diatreme, Chatkal Ridge, Uzbekistan". Mineralogical Magazine. 73 (1): 43–50. doi:10.1180/minmag.2009.073.1.43. S2CID   130176981.
  3. Sadri, Rad (15 January 2021). "Controlled physical properties and growth mechanism of manganese silicide nanorods". Journal of Alloys and Compounds. 851: 156693. doi:10.1016/j.jallcom.2020.156693. S2CID   224922987.