Sodium dithiophosphate

Last updated • 1 min readFrom Wikipedia, The Free Encyclopedia
Sodium dithiophosphate
Na3PO2S2.png
Identifiers
3D model (JSmol)
PubChem CID
  • InChI=1S/3Na.H3O2PS2/c;;;1-3(2,4)5/h;;;(H3,1,2,4,5)/q3*+1;/p-3
    Key: OFLNOEMLSXBOFY-UHFFFAOYSA-K
  • [O-]P(=S)([O-])[S-].[Na+].[Na+].[Na+]
Properties
Na3PS2O2
Molar mass 196.072 g mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Sodium dithiophosphate is the salt with the formula Na3PS2O2. It is usually supplied as the hydrated solid or as an aqueous solution together with other thiophosphates such as sodium monothiophosphate and sodium trithiophosphate. It is a colorless compound, but commercial samples can appear dark owing to the presence of impurities. It is used to facilitate the isolation of molybdenum from its ores.

Contents

Preparation

The compound has been prepared in a multistep process starting with the base hydrolysis of phosphorus pentasulfide: [1]

P2S5 + 6 NaOH → 2 Na3PO2S2 + H2S + 2 H2O

The salt is isolated as the hydrate Na3PO2S2.(H2O)11. It is prone to hydrolysis, especially when it is heated as an aqueous solutions:

Na3PO2S2 + 2 H2O → Na3PO3S + H2S

Its structure has been examined by X-ray crystallography. [2] [3]

Applications

This salt is used as a flotation agent in the purification of molybdenite (MoS2) from other components of the ores, where it is usually known as "Nokes reagent" (after Charles M. Nokes, who patented it in 1948 [4] ). The salt is generated by the reaction of phosphorus pentasulfide with sodium hydroxide, often using impure reagents to obtain a mixture of the desired salt and related thiophosphates and oxidized species. Molybdenite particles, which are normally hydrophobic, become hydrophilic in the presence of this salt. In this context, the Nokes reagent is called a "depressant," because it suppresses the flotation tendency of the solids other than molybdenite. [5] [6]

See also

Related Research Articles

<span class="mw-page-title-main">Oxide</span> Chemical compound where oxygen atoms are combined with atoms of other elements

An oxide is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– ion with oxygen in the oxidation state of −2. Most of the Earth's crust consists of oxides. Even materials considered pure elements often develop an oxide coating. For example, aluminium foil develops a thin skin of Al2O3 that protects the foil from further oxidation.

Iron(III) chloride describes the inorganic compounds with the formula FeCl3(H2O)x. Also called ferric chloride, these compounds are some of the most important and commonplace compounds of iron. They are available both in anhydrous and in hydrated forms which are both hygroscopic. They feature iron in its +3 oxidation state. The anhydrous derivative is a Lewis acid, while all forms are mild oxidizing agent. It is used as a water cleaner and as an etchant for metals.

<span class="mw-page-title-main">Zinc chloride</span> Chemical compound

Zinc chloride is the name of inorganic chemical compounds with the formula ZnCl2. It forms hydrates. Zinc chloride, anhydrous and its hydrates are colorless or white crystalline solids, and are highly soluble in water. Five hydrates of zinc chloride are known, as well as four forms of anhydrous zinc chloride. This salt is hygroscopic and even deliquescent. Zinc chloride finds wide application in textile processing, metallurgical fluxes, and chemical synthesis. No mineral with this chemical composition is known aside from the very rare mineral simonkolleite, Zn5(OH)8Cl2·H2O.

<span class="mw-page-title-main">Vanadium(V) oxide</span> Precursor to vanadium alloys and industrial catalyst

Vanadium(V) oxide (vanadia) is the inorganic compound with the formula V2O5. Commonly known as vanadium pentoxide, it is a brown/yellow solid, although when freshly precipitated from aqueous solution, its colour is deep orange. Because of its high oxidation state, it is both an amphoteric oxide and an oxidizing agent. From the industrial perspective, it is the most important compound of vanadium, being the principal precursor to alloys of vanadium and is a widely used industrial catalyst.

<span class="mw-page-title-main">Sodium tungstate</span> Chemical compound

Sodium tungstate is the inorganic compound with the formula Na2WO4. This white, water-soluble solid is the sodium salt of tungstic acid. It is useful as a source of tungsten for chemical synthesis. It is an intermediate in the conversion of tungsten ores to the metal.

<span class="mw-page-title-main">Sodium sulfide</span> Chemical compound

Sodium sulfide is a chemical compound with the formula Na2S, or more commonly its hydrate Na2S·9H2O. Both the anhydrous and the hydrated salts in pure crystalline form are colorless solids, although technical grades of sodium sulfide are generally yellow to brick red owing to the presence of polysulfides and commonly supplied as a crystalline mass, in flake form, or as a fused solid. They are water-soluble, giving strongly alkaline solutions. When exposed to moist air, Na2S and its hydrates emit hydrogen sulfide, an extremely toxic, flammable and corrosive gas which smells like rotten eggs.

<span class="mw-page-title-main">Sodium thioantimoniate</span> Chemical compound

Sodium thioantimoniate or sodium tetrathioantimonate(V) is an inorganic compound with the formula Na3SbS4. The nonahydrate of this chemical, Na3SbS4·9H2O, is known as Schlippe's salt, named after Johann Karl Friedrich von Schlippe (1799–1867). These compounds are examples of sulfosalts. They were once of interest as species generated in qualitative inorganic analysis.

<span class="mw-page-title-main">Zinc dithiophosphate</span> Lubricant additive

Zinc dialkyldithiophosphates are a family of coordination compounds developed in the 1940s that feature zinc bound to the anion of a dialkyldithiophosphoric salt. These uncharged compounds are not salts. They are soluble in nonpolar solvents, and the longer-chain derivatives easily dissolve in mineral and synthetic oils used as lubricants. They come under CAS number 68649-42-3. In aftermarket oil additives, the percentage of ZDDP ranges approximately between 2 and 15%. Zinc dithiophosphates have many names, including ZDDP, ZnDTP, and ZDP.

<span class="mw-page-title-main">Phosphorus pentasulfide</span> Chemical compound

Phosphorus pentasulfide is the inorganic compound with the formula P2S5 (empirical) or P4S10 (molecular). This yellow solid is the one of two phosphorus sulfides of commercial value. Samples often appear greenish-gray due to impurities. It is soluble in carbon disulfide but reacts with many other solvents such as alcohols, DMSO, and DMF.

<span class="mw-page-title-main">Hexafluorosilicic acid</span> Octahedric silicon compound

Hexafluorosilicic acid is an inorganic compound with the chemical formula H
2
SiF
6
. Aqueous solutions of hexafluorosilicic acid consist of salts of the cation and hexafluorosilicate anion. These salts and their aqueous solutions are colorless.

<span class="mw-page-title-main">Sodium hydrosulfide</span> Chemical compound

Sodium hydrosulfide is the chemical compound with the formula NaSH. This compound is the product of the half-neutralization of hydrogen sulfide with sodium hydroxide (NaOH). NaSH and sodium sulfide are used industrially, often for similar purposes. Solid NaSH is colorless. The solid has an odor of H2S owing to hydrolysis by atmospheric moisture. In contrast with sodium sulfide, which is insoluble in organic solvents, NaSH, being a 1:1 electrolyte, is more soluble.

<span class="mw-page-title-main">Iron(III) nitrate</span> Chemical compound

Iron(III) nitrate, or ferric nitrate, is the name used for a series of inorganic compounds with the formula Fe(NO3)3.(H2O)n. Most common is the nonahydrate Fe(NO3)3.(H2O)9. The hydrates are all pale colored, water-soluble paramagnetic salts.

<span class="mw-page-title-main">Thiophosphoryl chloride</span> Chemical compound

Thiophosphoryl chloride is an inorganic compound with the chemical formula PSCl3. It is a colorless pungent smelling liquid that fumes in air. It is synthesized from phosphorus chloride and used to thiophosphorylate organic compounds, such as to produce insecticides.

Thiophosphates (or phosphorothioates, PS) are chemical compounds and anions with the general chemical formula PS
4−x
O3−
x
(x = 0, 1, 2, or 3) and related derivatives where organic groups are attached to one or more O or S. Thiophosphates feature tetrahedral phosphorus(V) centers.

<span class="mw-page-title-main">Sodium monothiophosphate</span> Chemical compound

Sodium monothiophosphate, or sodium phosphorothioate, is an inorganic compound with the chemical formula Na3PO3S. It is a sodium salt of monothiophosphoric acid (H3PO3S). Sodium monothiophosphate forms hydrates Na3PO3xH2O. The anhydrous form and all hydrates are white solids. The anhydrous salt (x = 0) (Na3PO3S) decomposes without melting at 120-125 °C. More common is the dodecahydrate (Na3PO3S·12H2O). A nonahydrate is also known (Na3PO3S·9H2O).

<span class="mw-page-title-main">Diethyl dithiophosphoric acid</span> Chemical compound

Diethyl dithiophosphoric acid, sometimes mistakenly called diethyl dithiophosphate, is the organophosphorus compound with the formula (C2H5O)2PS2H. It is the processor for production of the organophosphate insecticide Terbufos. Although samples can appear dark, it is a colorless liquid.

<span class="mw-page-title-main">Thiophosphoric acid</span> Chemical compound

Thiophosphoric acid is an inorganic compound with the chemical formula H3PO3S. Structurally, it is the acid derived from phosphoric acid with one oxygen atom replaced by sulfur atom, although it cannot be prepared from phosphoric acid. It is a colorless compound that is rarely isolated in pure form, but rather as a solution. The structure of the compound has not been reported, but two tautomers are reasonable: S=P(−OH)3 and O=P(−OH)2(−SH).

<span class="mw-page-title-main">Sodium polysulfide</span> Chemical compound

Sodium polysulfide is a general term for salts with the formula Na2Sx, where x = 2 to 5. The species Sx2−, called polysulfide anions, include disulfide (S22−), trisulfide (S32−), tetrasulfide (S42−), and pentasulfide (S52−). In principle, but not in practice, the chain lengths could be longer. The salts are dark red solids that dissolve in water to give highly alkaline and corrosive solutions. In air, these salts oxidize, and they evolve hydrogen sulfide by hydrolysis.

<span class="mw-page-title-main">Vinylsulfonic acid</span> Chemical compound

Vinylsulfonic acid is the organosulfur compound with the chemical formula CH2=CHSO3H. It is the simplest unsaturated sulfonic acid. The C=C double bond is a site of high reactivity. Polymerization gives polyvinylsulfonic acid, especially when used as a comonomer with functionalized vinyl and (meth)acrylic acid compounds. It is a colorless, water-soluble liquid, although commercial samples can appear yellow or even red.

<span class="mw-page-title-main">Dimethyl dithiophosphoric acid</span> Chemical compound

Dimethyl dithiophosphoric acid is the organophosphorus compound with the formula (CH3O)2PS2H. It is the processor for production of the organothiophosphate insecticide Malathion. Although samples can appear dark, the compound is a colorless, distillable liquid.

References

  1. R. Klement "Phosphorus" in Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 571-2.
  2. Elias, D. P. (1957). "Crystallographic Data on Some Sodium Phosphorothioates". Acta Crystallographica. 10 (9): 600. Bibcode:1957AcCry..10..600E. doi: 10.1107/S0365110X57002108 .
  3. Pompetzki, Markus; Dinnebier, Robert E.; Jansen, Martin (2003). "Sodium dithiophosphate(V): Crystal structure, sodium ionic conductivity and dismutation". Solid State Sciences. 5 (11–12): 1439–1444. Bibcode:2003SSSci...5.1439P. doi:10.1016/j.solidstatesciences.2003.07.002.
  4. U.S. patent 2492936A
  5. Baki Yarar, "Flotation" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Wienheim, 2005.
  6. Yarar, Baki (2000). "Flotation". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.b02_23. ISBN   3527306730.