Iodometry, known as iodometric titration, is a method of volumetric chemical analysis, a redox titration where the appearance or disappearance of elementary iodine indicates the end point.
Note that iodometry involves indirect titration of iodine liberated by reaction with the analyte, whereas iodimetry involves direct titration using iodine as the titrant.
Redox titration using sodium thiosulphate, Na2S2O3 (usually) as a reducing agent is known as iodometric titration since it is used specifically to titrate iodine. The iodometric titration is a general method to determine the concentration of an oxidising agent in solution. In an iodometric titration, a starch solution is used as an indicator since it can absorb the I2 that is released, visually indicating a positive iodine-starch test with a deep blue hue. This absorption will cause the solution to change its colour from deep blue to light yellow when titrated with standardized thiosulfate solution. This indicates the end point of the titration. Iodometry is commonly used to analyze the concentration of oxidizing agents in water samples, such as oxygen saturation in ecological studies or active chlorine in swimming pool water analysis.
To a known volume of sample, an excess but known amount of I- is added, which the oxidizing agent then oxidizes to I2. I2 dissolves in the iodide-containing solution to give triiodide ions (I3-), which have a dark brown color. The triiodide ion solution is then titrated against standard thiosulfate solution to give iodide again using starch indicator:
Together with reduction potential of thiosulfate: [1]
The overall reaction is thus:
For simplicity, the equations will usually be written in terms of aqueous molecular iodine rather than the triiodide ion, as the iodide ion did not participate in the reaction in terms of mole ratio analysis. The disappearance of the deep blue color is, due to the decomposition of the iodine-starch clathrate, marks the end point.
The reducing agent used does not necessarily need to be thiosulfate; stannous chloride, sulfites, sulfides, arsenic(III), and antimony(III) salts are commonly used alternatives [2] at pH above 8.
At low pH, the following reaction might occur with thiosulfate:
Some reactions involving certain reductants are reversible at certain pH, thus the pH of the sample solution should be carefully adjusted before performing the analysis. For example, the reaction:
is reversible at pH below 4.
The volatility of iodine is also a source of error for the titration, this can be effectively prevented by ensuring an excess iodide is present and cooling the titration mixture. Strong light, nitrite and copper ions catalyse the conversion of iodide to iodine, so these should be removed prior to the addition of iodide to the sample.
For prolonged titrations, it is advised to add dry ice to the titration mixture to displace air from the Erlenmeyer flask so as to prevent the aerial oxidation of iodide to iodine. Standard iodine solution is prepared from potassium iodate and potassium iodide, which are both primary standards:
Iodine in organic solvents, such as diethyl ether and carbon tetrachloride, may be titrated against sodium thiosulfate dissolved in acetone.[ clarification needed ]
Iodometry in its many variations is extremely useful in volumetric analysis. Examples include the determination of copper(II), chlorate, hydrogen peroxide, and dissolved oxygen:
Available chlorine refers to chlorine liberated by the action of dilute acids on hypochlorite. Iodometry is commonly employed to determine the active amount of hypochlorite in bleach responsible for the bleaching action. In this method, excess but known amount of iodide is added to known volume of sample, in which only the active (electrophilic) can oxidize iodide to iodine. The iodine content and thus the active chlorine content can be determined with iodometry. [3]
The determination of arsenic(V) compounds is the reverse of the standardization of iodine solution with sodium arsenite, where a known and excess amount of iodide is added to the sample:
For analysis of antimony(V) compounds, some tartaric acid is added to solubilize the antimony(III) product. [2]
Sulfites and hydrogensulfites reduce iodine readily in acidic medium to iodide. Thus when a diluted but excess amount of standard iodine solution is added to known volume of sample, the sulfurous acid and sulfites present reduces iodine quantitatively:
(This application is used for iodimetry titration because here iodine is directly used)
Although the sulfide content in sample can be determined straight forwardly as described for sulfites, the results are often poor and inaccurate. A better, alternative method with higher accuracy is available, which involves the addition of excess but known volume of standard sodium arsenite solution to the sample, during which arsenic trisulfide is precipitated:
The excess arsenic trioxide is then determined by titrating against standard iodine solution using starch indicator. Note that for the best results, the sulfide solution must be dilute with the sulfide concentration not greater than 0.01 M. [2]
When iodide is added to a solution of hexacyanoferrate(III), the following equilibrium exists:
Under strongly acidic solution, the above equilibrium lies far to the right hand side, but is reversed in almost neutral solution. This makes analysis of hexacyanoferrate(III) troublesome as the iodide and thiosulfate decomposes in strongly acidic medium. To drive the reaction to completion, an excess amount of zinc salt can be added to the reaction mixture containing potassium ions, which precipitates the hexacyanoferrate(II) ion quantitatively:
The precipitation occurs in slightly acidic medium, thus avoids the problem of decomposition of iodide and thiosulfate in strongly acidic medium, and the hexacyanoferrate(III) can be determined by iodometry as usual. [2]
Iodine is a chemical element; it has symbol I and atomic number 53. The heaviest of the stable halogens, it exists at standard conditions as a semi-lustrous, non-metallic solid that melts to form a deep violet liquid at 114 °C (237 °F), and boils to a violet gas at 184 °C (363 °F). The element was discovered by the French chemist Bernard Courtois in 1811 and was named two years later by Joseph Louis Gay-Lussac, after the Ancient Greek Ιώδης, meaning 'violet'.
Titration is a common laboratory method of quantitative chemical analysis to determine the concentration of an identified analyte. A reagent, termed the titrant or titrator, is prepared as a standard solution of known concentration and volume. The titrant reacts with a solution of analyte to determine the analyte's concentration. The volume of titrant that reacted with the analyte is termed the titration volume.
The Winkler test is used to determine the concentration of dissolved oxygen in water samples. Dissolved oxygen (D.O.) is widely used in water quality studies and routine operation of water reclamation facilities to analyze its level of oxygen saturation.
In analytical chemistry, Karl Fischer titration is a classic titration method that uses coulometric or volumetric titration to determine trace amounts of water in a sample. It was invented in 1935 by the German chemist Karl Fischer. Today, the titration is done with an automated Karl Fischer titrator.
A redox titration is a type of titration based on a redox reaction between the analyte and titrant. It may involve the use of a redox indicator and/or a potentiometer. A common example of a redox titration is treating a solution of iodine with a reducing agent to produce iodide using a starch indicator to help detect the endpoint. Iodine (I2) can be reduced to iodide (I−) by, say, thiosulfate (S2O2−3), and when all iodine is spent the blue colour disappears. This is called an iodometric titration.
Classical qualitative inorganic analysis is a method of analytical chemistry which seeks to find the elemental composition of inorganic compounds. It is mainly focused on detecting ions in an aqueous solution, therefore materials in other forms may need to be brought to this state before using standard methods. The solution is then treated with various reagents to test for reactions characteristic of certain ions, which may cause color change, precipitation and other visible changes.
Sodium thiosulfate is an inorganic compound with the formula Na2S2O3·(H2O)(x). Typically it is available as the white or colorless pentahydrate. It is a white solid that dissolves well in water. The compound is a reducing agent and a ligand, and these properties underpin its applications.
The iodine–starch test is a chemical reaction that is used to test for the presence of starch or for iodine. The combination of starch and iodine is intensely blue-black. The interaction between starch and the triiodide anion is the basis for iodometry.
In chemistry, the iodine value is the mass of iodine in grams that is consumed by 100 grams of a chemical substance. Iodine numbers are often used to determine the degree of unsaturation in fats, oils and waxes. In fatty acids, unsaturation occurs mainly as double bonds which are very reactive towards halogens, the iodine in this case. Thus, the higher the iodine value, the more unsaturations are present in the fat. It can be seen from the table that coconut oil is very saturated, which means it is good for making soap. On the other hand, linseed oil is highly unsaturated, which makes it a drying oil, well suited for making oil paints.
Hydrogen iodide (HI) is a diatomic molecule and hydrogen halide. Aqueous solutions of HI are known as hydroiodic acid or hydriodic acid, a strong acid. Hydrogen iodide and hydroiodic acid are, however, different in that the former is a gas under standard conditions, whereas the other is an aqueous solution of the gas. They are interconvertible. HI is used in organic and inorganic synthesis as one of the primary sources of iodine and as a reducing agent.
Iodic acid is a white water-soluble solid with the chemical formula HIO3. Its robustness contrasts with the instability of chloric acid and bromic acid. Iodic acid features iodine in the oxidation state +5 and is one of the most stable oxo-acids of the halogens. When heated, samples dehydrate to give iodine pentoxide. On further heating, the iodine pentoxide further decomposes, giving a mix of iodine, oxygen and lower oxides of iodine.
In chemistry, triiodide usually refers to the triiodide ion, I−
3. This anion, one of the polyhalogen ions, is composed of three iodine atoms. It is formed by combining aqueous solutions of iodide salts and iodine. Some salts of the anion have been isolated, including thallium(I) triiodide (Tl+[I3]−) and ammonium triiodide ([NH4]+[I3]−). Triiodide is observed to be a red colour in solution.
Percent active chlorine is a unit of concentration used for hypochlorite-based bleaches. One gram of a 100% active chlorine bleach has the quantitative bleaching capacity as one gram of free chlorine. The term "active chlorine" is used because most commercial bleaches also contain chlorine in the form of chloride ions, which have no bleaching properties.
The iodine clock reaction is a classical chemical clock demonstration experiment to display chemical kinetics in action; it was discovered by Hans Heinrich Landolt in 1886. The iodine clock reaction exists in several variations, which each involve iodine species and redox reagents in the presence of starch. Two colourless solutions are mixed and at first there is no visible reaction. After a short time delay, the liquid suddenly turns to a shade of dark blue due to the formation of a triiodide–starch complex. In some variations, the solution will repeatedly cycle from colorless to blue and back to colorless, until the reagents are depleted.
Thiosulfate is an oxyanion of sulfur with the chemical formula S2O2−3. Thiosulfate also refers to the compounds containing this anion, which are the salts of thiosulfuric acid, e.g. sodium thiosulfate Na2S2O3. Thiosulfate also refers to the esters of thiosulfuric acid. The prefix thio- indicates that the thiosulfate is a sulfate with one oxygen replaced by sulfur. Thiosulfate is tetrahedral at the central S atom. Thiosulfate salts occur naturally. Thiosulfate ion has C3v symmetry, and is produced by certain biochemical processes. It rapidly dechlorinates water and is notable for its use to halt bleaching in the paper-making industry. Thiosulfate salts are mainly used in dying in textiles and the bleaching of natural substances.
Iodine compounds are compounds containing the element iodine. Iodine can form compounds using multiple oxidation states. Iodine is quite reactive, but it is much less reactive than the other halogens. For example, while chlorine gas will halogenate carbon monoxide, nitric oxide, and sulfur dioxide, iodine will not do so. Furthermore, iodination of metals tends to result in lower oxidation states than chlorination or bromination; for example, rhenium metal reacts with chlorine to form rhenium hexachloride, but with bromine it forms only rhenium pentabromide and iodine can achieve only rhenium tetraiodide. By the same token, however, since iodine has the lowest ionisation energy among the halogens and is the most easily oxidised of them, it has a more significant cationic chemistry and its higher oxidation states are rather more stable than those of bromine and chlorine, for example in iodine heptafluoride.
A thermometric titration is one of a number of instrumental titration techniques where endpoints can be located accurately and precisely without a subjective interpretation on the part of the analyst as to their location. Enthalpy change is arguably the most fundamental and universal property of chemical reactions, so the observation of temperature change is a natural choice in monitoring their progress. It is not a new technique, with possibly the first recognizable thermometric titration method reported early in the 20th century. In spite of its attractive features, and in spite of the considerable research that has been conducted in the field and a large body of applications that have been developed; it has been until now an under-utilized technique in the critical area of industrial process and quality control. Automated potentiometric titration systems have pre-dominated in this area since the 1970s. With the advent of cheap computers able to handle the powerful thermometric titration software, development has now reached the stage where easy to use automated thermometric titration systems can in many cases offer a superior alternative to potentiometric titrimetry.
Detection of peroxide gives the initial evidence of rancidity in unsaturated fats and oils. Other methods are available, but peroxide value is the most widely used. It gives a measure of the extent to which an oil sample has undergone primary oxidation; extent of secondary oxidation may be determined from p-anisidine test.
Sulfoxylic acid (H2SO2) (also known as hyposulfurous acid or sulfur dihydroxide) is an unstable oxoacid of sulfur in an intermediate oxidation state between hydrogen sulfide and dithionous acid. It consists of two hydroxy groups attached to a sulfur atom. Sulfoxylic acid contains sulfur in an oxidation state of +2. Sulfur monoxide (SO) can be considered as a theoretical anhydride for sulfoxylic acid, but it is not actually known to react with water.
Potassium thiosulfate is an inorganic compound with the formula K2S2O3. This salt can form multiple hydrates, such as the monohydrate, dihydrate, and the pentahydrate, all of which are white or colorless solids. It is used as a fertilizer.