Diglyme

Last updated
Diglyme
Diglyme.png
Diglyme 3D spacefill.png
Names
Preferred IUPAC name
1-Methoxy-2-(2-methoxyethoxy)ethane [1]
Other names
Diglyme
2-Methoxyethyl ether
Di(2-methoxyethyl) ether
Diethylene glycol dimethyl ether
Identifiers
3D model (JSmol)
1736101
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.003.568 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 203-924-4
26843
PubChem CID
RTECS number
  • KN3339000
UNII
UN number 2252 1993
  • InChI=1S/C6H14O3/c1-7-3-5-9-6-4-8-2/h3-6H2,1-2H3 Yes check.svgY
    Key: SBZXBUIDTXKZTM-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C6H14O3/c1-7-3-5-9-6-4-8-2/h3-6H2,1-2H3
    Key: SBZXBUIDTXKZTM-UHFFFAOYAG
  • COCCOCCOC
Properties
(CH3OCH2CH2)2O
Molar mass 134.175 g·mol−1
Density 0.937 g/mL
Melting point −64 °C (−83 °F; 209 K)
Boiling point 162 °C (324 °F; 435 K)
Miscible
Hazards
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-silhouette.svg
Danger
H226, H360
P201, P202, P210, P233, P240, P241, P242, P243, P280, P281, P303+P361+P353, P308+P313, P370+P378, P403+P235, P405, P501
Flash point 57 °C (135 °F; 330 K)
Related compounds
Related compounds
Diethylene glycol diethyl ether, ethylene glycol dimethyl ether
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Diglyme, or bis(2-methoxyethyl) ether, is an organic compound with the chemical formula (CH3OCH2CH2)2O. It is a colorless liquid with a slight ether-like odor. It is a solvent with a high boiling point. It is the dimethyl ether of diethylene glycol. The name diglyme is a portmanteau of diglycol methyl ether. It is miscible with water as well as organic solvents.

Contents

It is prepared by a reaction of dimethyl ether and ethylene oxide over an acid catalyst. [2]

Solvent

Structure of [Na(diglyme)2] as found in its salt with the fluorenyl anion. (Na(diglyme)2)cation-3D-balls.png
Structure of [Na(diglyme)2] as found in its salt with the fluorenyl anion.

Because of its resistance to strong bases, diglyme is favored as a solvent for reactions of alkali metal reagents even at high temperatures. Rate enhancements in reactions involving organometallic reagents, such as Grignard reactions or metal hydride reductions, have been observed when using diglyme as a solvent. [4] [5]

Diglyme is also used as a solvent in hydroboration reactions with diborane. [6] [7]

It serves as a chelate for alkali metal cations, leaving anions more active.

Safety

The European Chemicals Agency lists diglyme as a substance of very high concern (SVHC) as a reproductive toxin. [8]

At higher temperatures and in the presence of active metals diglyme is known to decompose, which can produce large amounts of gas and heat. [9] This decomposition led to the T2 Laboratories reactor explosion in 2007. [10]

Related Research Articles

<span class="mw-page-title-main">Epoxide</span> Organic compounds with a carbon-carbon-oxygen ring

In organic chemistry, an epoxide is a cyclic ether, where the ether forms a three-atom ring: two atoms of carbon and one atom of oxygen. This triangular structure has substantial ring strain, making epoxides highly reactive, more so than other ethers. They are produced on a large scale for many applications. In general, low molecular weight epoxides are colourless and nonpolar, and often volatile.

<span class="mw-page-title-main">Imine</span> Organic compound or functional group containing a C=N bond

In organic chemistry, an imine is a functional group or organic compound containing a carbon–nitrogen double bond. The nitrogen atom can be attached to a hydrogen or an organic group (R). The carbon atom has two additional single bonds. Imines are common in synthetic and naturally occurring compounds and they participate in many reactions.

In organometallic chemistry, acetylide refers to chemical compounds with the chemical formulas MC≡CH and MC≡CM, where M is a metal. The term is used loosely and can refer to substituted acetylides having the general structure RC≡CM. Acetylides are reagents in organic synthesis. The calcium acetylide commonly called calcium carbide is a major compound of commerce.

<span class="mw-page-title-main">Anisole</span> Organic compound (CH₃OC₆H₅) also named methoxybenzene

Anisole, or methoxybenzene, is an organic compound with the formula CH3OC6H5. It is a colorless liquid with a smell reminiscent of anise seed, and in fact many of its derivatives are found in natural and artificial fragrances. The compound is mainly made synthetically and is a precursor to other synthetic compounds. Structurally, it is an ether with a methyl and phenyl group attached. Anisole is a standard reagent of both practical and pedagogical value.

<span class="mw-page-title-main">Diisopropyl ether</span> Chemical compound

Diisopropyl ether is a secondary ether that is used as a solvent. It is a colorless liquid that is slightly soluble in water, but miscible with organic solvents. It is used as an extractant and an oxygenate gasoline additive. It is obtained industrially as a byproduct in the production of isopropanol by hydration of propylene. Diisopropyl ether is sometimes represented by the abbreviation DIPE.

<span class="mw-page-title-main">Dimethoxyethane</span> Chemical compound

Dimethoxyethane, also known as glyme, monoglyme, dimethyl glycol, ethylene glycol dimethyl ether, dimethyl cellosolve, and DME, is a colorless, aprotic, and liquid ether that is used as a solvent, especially in batteries. Dimethoxyethane is miscible with water.

<span class="mw-page-title-main">Xanthate</span> Salt that is a metal-thioate/O-esters of dithiocarbonate

Xanthate usually refers to a salt of xanthic acid. The formula of the salt of xanthic acid is [R−O−CS2]M+ ,. Xanthate also refers to the anion [R−O−CS2]. Xanthate also may refer to an ester of xanthic acid. The formula of xanthic acid is R−O−C(=S)−S−H, while the formula of the esters of xanthic acid is R−O−C(=S)−S−R', where R and R' are organyl groups. The salts of xanthates are also called O-organyl dithioates. The esters of xanthic acid are also called O,S-diorganyl esters of dithiocarbonic acid. The name xanthate is derived from Ancient Greek ξανθός xanthos, meaning “yellowish, golden”, and indeed most xanthate salts are yellow. They were discovered and named in 1823 by Danish chemist William Christopher Zeise. These organosulfur compounds are important in two areas: the production of cellophane and related polymers from cellulose and for extraction of certain sulphide bearing ores. They are also versatile intermediates in organic synthesis.

<span class="mw-page-title-main">Potassium fluoride</span> Ionic compound (KF)

Potassium fluoride is the chemical compound with the formula KF. After hydrogen fluoride, KF is the primary source of the fluoride ion for applications in manufacturing and in chemistry. It is an alkali halide salt and occurs naturally as the rare mineral carobbiite. Solutions of KF will etch glass due to the formation of soluble fluorosilicates, although HF is more effective.

The Ullmann condensation or Ullmann-type reaction is the copper-promoted conversion of aryl halides to aryl ethers, aryl thioethers, aryl nitriles, and aryl amines. These reactions are examples of cross-coupling reactions.

The Bouveault–Blanc reduction is a chemical reaction in which an ester is reduced to primary alcohols using absolute ethanol and sodium metal. It was first reported by Louis Bouveault and Gustave Louis Blanc in 1903. Bouveault and Blanc demonstrated the reduction of ethyl oleate and n-butyl oleate to oleyl alcohol. Modified versions of which were subsequently refined and published in Organic Syntheses.

<span class="mw-page-title-main">1,4-Benzoquinone</span> Chemical compound

1,4-Benzoquinone, commonly known as para-quinone, is a chemical compound with the formula C6H4O2. In a pure state, it forms bright-yellow crystals with a characteristic irritating odor, resembling that of chlorine, bleach, and hot plastic or formaldehyde. This six-membered ring compound is the oxidized derivative of 1,4-hydroquinone. The molecule is multifunctional: it exhibits properties of a ketone, being able to form oximes; an oxidant, forming the dihydroxy derivative; and an alkene, undergoing addition reactions, especially those typical for α,β-unsaturated ketones. 1,4-Benzoquinone is sensitive toward both strong mineral acids and alkali, which cause condensation and decomposition of the compound.

<span class="mw-page-title-main">18-Crown-6</span> Chemical compound

18-Crown-6 is an organic compound with the formula [C2H4O]6 and the IUPAC name of 1,4,7,10,13,16-hexaoxacyclooctadecane. It is a white, hygroscopic crystalline solid with a low melting point. Like other crown ethers, 18-crown-6 functions as a ligand for some metal cations with a particular affinity for potassium cations (binding constant in methanol: 106 M−1). The point group of 18-crown-6 is S6. The dipole moment of 18-crown-6 varies in different solvent and under different temperature. Under 25 °C, the dipole moment of 18-crown-6 is 2.76 ± 0.06 D in cyclohexane and 2.73 ± 0.02 in benzene. The synthesis of the crown ethers led to the awarding of the Nobel Prize in Chemistry to Charles J. Pedersen.

<i>tert</i>-Butyllithium Chemical compound

tert-Butyllithium is a chemical compound with the formula (CH3)3CLi. As an organolithium compound, it has applications in organic synthesis since it is a strong base, capable of deprotonating many carbon molecules, including benzene. tert-Butyllithium is available commercially as hydrocarbon solutions; it is not usually prepared in the laboratory.

The Finkelstein reaction named after the German chemist Hans Finkelstein, is an SN2 reaction that involves the exchange of one halogen atom for another. It is an equilibrium reaction, but the reaction can be driven to completion by exploiting the differential solubility of halide salts, or by using a large excess of the halide salt.

<span class="mw-page-title-main">Sodium methoxide</span> Ionic organic compound (CH3ONa)

Sodium methoxide is the simplest sodium alkoxide. With the formula CH3ONa, it is a white solid, which is formed by the deprotonation of methanol. It is a widely used reagent in industry and the laboratory. It is also a dangerously caustic base.

<i>sec</i>-Butyllithium Chemical compound

sec-Butyllithium is an organometallic compound with the formula CH3CHLiCH2CH3, abbreviated sec-BuLi or s-BuLi. This chiral organolithium reagent is used as a source of sec-butyl carbanion in organic synthesis.

In nitrile reduction a nitrile is reduced to either an amine or an aldehyde with a suitable chemical reagent.

In organic chemistry, alkynylation is an addition reaction in which a terminal alkyne is added to a carbonyl group to form an α-alkynyl alcohol.

In organic chemistry, vinylation is the process of attaching a vinyl group to a substrate. Many organic compounds contain vinyl groups, so the process has attracted significant interest, especially since the reaction scope includes substituted vinyl groups. The reactions can be classified according to the source of the vinyl group.

<span class="mw-page-title-main">(Trimethylsilyl)methyllithium</span> Chemical compound

(Trimethylsilyl)methyllithium is classified both as an organolithium compound and an organosilicon compound. It has the empirical formula LiCH2Si(CH3)3, often abbreviated LiCH2tms. It crystallizes as the hexagonal prismatic hexamer [LiCH2tms]6, akin to some polymorphs of methyllithium. Many adducts have been characterized including the diethyl ether complexed cubane [Li43-CH2tms)4(Et2O)2] and [Li2(μ-CH2tms)2(tmeda)2].

References

  1. Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 704. doi:10.1039/9781849733069-FP001. ISBN   978-0-85404-182-4.
  2. Siegfried Rebsdat; Dieter Mayer. "Ethylene Glycol". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a10_101.
  3. S. Neander; J. Kornich; F. Olbrich (2002). "Novel Fluorenyl Alkali Metal DIGLYME Complexes: Synthesis and Solid State Structures". J. Organomet. Chem. 656 (1–2): 89. doi:10.1016/S0022-328X(02)01563-2.
  4. J. E. Ellis; A. Davison; G. W. Parshall; E. R. Wonchoba (1976). "Tris[Bis(2‐Methoxyethyl)Ether]Potassium and Tetraphenylarsonium Hexacarbonylmetallates(1–) of Niobium and Tantalum". In Fred Basolo (ed.). Inorganic Syntheses. Vol. 16. pp. 68–73. doi:10.1002/9780470132470.ch21. ISBN   978-0-470-13247-0.
  5. J. E. Siggins; A. A. Larsen; J. H. Ackerman; C. D. Carabateas (1973). "3,5-Dinitrobenzaldehyde". Organic Syntheses. 53: 52. doi:10.15227/orgsyn.053.0052.
  6. Michael W. Rathke; Alan A. Millard (1978). "Boranes in Functionalization of Olefins to Amines: 3-Pinanamine". Organic Syntheses. 58: 32. doi:10.15227/orgsyn.058.0032.
  7. Ei-ichi Negishi; Herbert C. Brown (1983). "Perhydro-9b-Boraphenalene and Perhydro-9b-Phenalenol". Organic Syntheses. 61: 103. doi:10.15227/orgsyn.061.0103.
  8. "Inclusion of Substances of Very High Concern in the Candidate List (Decision of the European Chemicals Agency)". 19 Dec 2011.
  9. Pitt, Martin J. (July 12, 2010). "Chemical Safety: Dangers Of Diglyme". cen.acs.org. Archived from the original on 2012-05-11. Retrieved 2021-09-01.
  10. Willey, Ronald J.; Fogler, H. Scott; Cutlip, Michael B. (March 2011). "The integration of process safety into a chemical reaction engineering course: Kinetic modeling of the T2 incident". Process Safety Progress. 30 (1): 39–44. doi:10.1002/prs.10431. hdl: 2027.42/83180 . S2CID   109207593.