Caesium heptafluoroxenate

Last updated
Caesium heptafluoroxenate
Identifiers
3D model (JSmol)
  • InChI=1S/Cs.F7Xe/c;1-8(2,3,4,5,6)7/q+1;-1
    Key: IAPXLONHTNZYMY-UHFFFAOYSA-N
  • [Cs+].F[Xe-](F)(F)(F)(F)(F)F
Properties
CsF7Xe
Molar mass 397.187 g·mol−1
Appearanceyellow solid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Caesium heptafluoroxenate is an inorganic compound of caesium, and fluorine, and xenon with the chemical formula CsXeF7.

Contents

Preparation

Caesium heptafluoroxenate can be prepared by dissolving xenon hexafluoride in molten caesium fluoride: [1]

CsF + XeF6 → CsXeF7

Properties

Caesium heptafluoroxenate is a yellow solid that is stable at room temperature. It is very strong oxidizer. The compound decomposes at 50 °C to produce caesium octofluoroxenate: [2]

2CsXeF7 → Cs2XeF8 + XeF6

Uses

Caesium heptafluoroxenate is used to isolate xenon hexafluoride from a reaction mixture.

Related Research Articles

<span class="mw-page-title-main">Xenon hexafluoroplatinate</span> Chemical compound

Xenon hexafluoroplatinate is the product of the reaction of platinum hexafluoride with xenon, in an experiment that proved the chemical reactivity of the noble gases. This experiment was performed by Neil Bartlett at the University of British Columbia, who formulated the product as "Xe+[PtF6]", although subsequent work suggests that Bartlett's product was probably a salt mixture and did not in fact contain this specific salt.

In chemistry, noble gas compounds are chemical compounds that include an element from the noble gases, group 18 of the periodic table. Although the noble gases are generally unreactive elements, many such compounds have been observed, particularly involving the element xenon.

Xenon tetroxide is a chemical compound of xenon and oxygen with molecular formula XeO4, remarkable for being a relatively stable compound of a noble gas. It is a yellow crystalline solid that is stable below −35.9 °C; above that temperature it is very prone to exploding and decomposing into elemental xenon and oxygen (O2).

<span class="mw-page-title-main">Xenon tetrafluoride</span> Chemical compound

Xenon tetrafluoride is a chemical compound with chemical formula XeF
4
. It was the first discovered binary compound of a noble gas. It is produced by the chemical reaction of xenon with fluorine:

<span class="mw-page-title-main">Xenon hexafluoride</span> Chemical compound

Xenon hexafluoride is a noble gas compound with the formula XeF6. It is one of the three binary fluorides of xenon that have been studied experimentally, the other two being XeF2 and XeF4. All known are exergonic and stable at normal temperatures. XeF6 is the strongest fluorinating agent of the series. It is a colorless solid that readily sublimes into intensely yellow vapors.

<span class="mw-page-title-main">Platinum hexafluoride</span> Chemical compound

Platinum hexafluoride is the chemical compound with the formula PtF6, and is one of seventeen known binary hexafluorides. It is a dark-red volatile solid that forms a red gas. The compound is a unique example of platinum in the +6 oxidation state. With only four d-electrons, it is paramagnetic with a triplet ground state. PtF6 is a strong fluorinating agent and one of the strongest oxidants, capable of oxidising xenon and O2. PtF6 is octahedral in both the solid state and in the gaseous state. The Pt-F bond lengths are 185 picometers.

Tellurium hexafluoride is the inorganic compound of tellurium and fluorine with the chemical formula TeF6. It is a colorless, highly toxic gas with an unpleasant odor.

<span class="mw-page-title-main">Xenon trioxide</span> Chemical compound

Xenon trioxide is an unstable compound of xenon in its +6 oxidation state. It is a very powerful oxidizing agent, and liberates oxygen from water slowly, accelerated by exposure to sunlight. It is dangerously explosive upon contact with organic materials. When it detonates, it releases xenon and oxygen gas.

<span class="mw-page-title-main">Xenon difluoride</span> Chemical compound

Xenon difluoride is a powerful fluorinating agent with the chemical formula XeF
2
, and one of the most stable xenon compounds. Like most covalent inorganic fluorides it is moisture-sensitive. It decomposes on contact with water vapor, but is otherwise stable in storage. Xenon difluoride is a dense, colourless crystalline solid.

<span class="mw-page-title-main">Xenon oxytetrafluoride</span> Chemical compound

Xenon oxytetrafluoride is an inorganic chemical compound. It is an unstable colorless liquid with a melting point of −46.2 °C that can be synthesized by partial hydrolysis of XeF
6
, or the reaction of XeF
6
with silica or NaNO
3
:

<span class="mw-page-title-main">Technetium hexafluoride</span> Chemical compound

Technetium hexafluoride or technetium(VI) fluoride (TcF6) is a yellow inorganic compound with a low melting point. It was first identified in 1961. In this compound, technetium has an oxidation state of +6, the highest oxidation state found in the technetium halides. In this respect, technetium differs from rhenium, which forms a heptafluoride, ReF7. Technetium hexafluoride occurs as an impurity in uranium hexafluoride, as technetium is a fission product of uranium (spontaneous fission in natural uranium, possible contamination from induced fission inside the reactor in reprocessed uranium). The fact that the boiling point of the hexafluorides of uranium and technetium are very close to each other presents a problem in using fluoride volatility in nuclear reprocessing.

<span class="mw-page-title-main">Dioxygenyl</span> Chemical compound

The dioxygenyl ion, O+
2
, is a rarely-encountered oxycation in which both oxygen atoms have a formal oxidation state of +1/2. It is formally derived from oxygen by the removal of an electron:

<span class="mw-page-title-main">Rhenium heptafluoride</span> Chemical compound

Rhenium heptafluoride is the compound with the formula ReF7. It is a yellow low melting solid and is the only thermally stable metal heptafluoride. It has a distorted pentagonal bipyramidal structure similar to IF7, which was confirmed by neutron diffraction at 1.5 K. The structure is non-rigid, as evidenced by electron diffraction studies.

A hexafluoride is a chemical compound with the general formula QXnF6, QXnF6m−, or QXnF6m+. Many molecules fit this formula. An important hexafluoride is hexafluorosilicic acid (H2SiF6), which is a byproduct of the mining of phosphate rock. In the nuclear industry, uranium hexafluoride (UF6) is an important intermediate in the purification of this element.

<span class="mw-page-title-main">Nitrosonium octafluoroxenate(VI)</span> Chemical compound

Nitrosonium octafluoroxenate(VI) is a chemical compound of xenon with nitrogen, oxygen, and fluorine, having formula (NO)
2
XeF
8
. It is an ionic compound containing well-separated nitrosonium cations (NO+) and octafluoroxenate(VI) anions (XeF2−
8
). The molecular geometry of the octafluoroxenate(VI) ion is square antiprismatic, having Xe–F bond lengths of 1.971 Å, 1.946 Å, 1.958 Å, 2.052 Å, and 2.099 Å.

<span class="mw-page-title-main">Hexafluoroplatinate</span>

A hexafluoroplatinate is a chemical compound which contains the hexafluoroplatinate PtF−6 anion. It is produced by combining substances with platinum hexafluoride.

Chromium pentafluoride is the inorganic compound with the chemical formula CrF5. It is a red volatile solid that melts at 34 °C. It is the highest known chromium fluoride, since the hypothetical chromium hexafluoride has not yet been synthesized.

<span class="mw-page-title-main">Xenon hexafluororhodate</span> Chemical compound

Xenon hexafluororhodate (XeRhF6) is a deep-red noble gas compound first synthesised in 1963 by Neil Bartlett. It is analogous to xenon hexafluoroplatinate.

Fluorine forms a great variety of chemical compounds, within which it always adopts an oxidation state of −1. With other atoms, fluorine forms either polar covalent bonds or ionic bonds. Most frequently, covalent bonds involving fluorine atoms are single bonds, although at least two examples of a higher order bond exist. Fluoride may act as a bridging ligand between two metals in some complex molecules. Molecules containing fluorine may also exhibit hydrogen bonding. Fluorine's chemistry includes inorganic compounds formed with hydrogen, metals, nonmetals, and even noble gases; as well as a diverse set of organic compounds. For many elements the highest known oxidation state can be achieved in a fluoride. For some elements this is achieved exclusively in a fluoride, for others exclusively in an oxide; and for still others the highest oxidation states of oxides and fluorides are always equal.

<span class="mw-page-title-main">Radon compounds</span>

Radon compounds are chemical compounds formed by the element radon (Rn). Radon is a noble gas, i.e. a zero-valence element, and is chemically not very reactive. The 3.8-day half-life of radon-222 makes it useful in physical sciences as a natural tracer. Because radon is a gas under normal circumstances, and its decay-chain parents are not, it can readily be extracted from them for research.

References

  1. Raghavan, P. S. (1998). Concepts And Problems In Inorganic Chemistry. Discovery Publishing House. p. 283. ISBN   978-81-7141-418-5 . Retrieved 29 February 2024.
  2. Holliday, A. K.; Massey, A. G. (22 October 2013). Non-Aqueous Solvents in Inorganic Chemistry: The Commonwealth and International Library: Chemistry Division. Elsevier. p. 110. ISBN   978-1-4831-5941-6 . Retrieved 29 February 2024.