Caesium chromate

Last updated
Caesium chromate
Cesium chromate crystals.jpg
Caesium chromate formula.svg
Names
IUPAC name
Caesium chromate
Other names
Dicaesium chromate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.033.296 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 236-640-4
PubChem CID
  • InChI=1/Cr.2Cs.4O/q;2*+1;;;2*-1/rCrO4.2Cs/c2-1(3,4)5;;/q-2;2*+1
    Key: BROHICCPQMHYFY-UICSPCLAAP
  • [Cs+].[Cs+].[O-][Cr]([O-])(=O)=O
Properties [1]
Cs2CrO4
AppearanceYellow crystalline solid
Density 4.237 g/cm3
Melting point 954 to 961 °C (1,749 to 1,762 °F; 1,227 to 1,234 K)
45.50 g/100 g (25 °C)
Structure
orthorhombic
Pnma (№ 62)
a = 8.368 Å, b = 6.226 Å, c = 11.135 Å
4
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
highly toxic, carcinogenic, oxidiser, environmental hazard
GHS labelling:
GHS-pictogram-rondflam.svg GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
Flash point Non-flammable
Related compounds
Other anions
Caesium sulfate
Other cations
Sodium chromate
Potassium chromate
Ammonium chromate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Caesium chromate or cesium chromate is an inorganic compound with the formula Cs2CrO4. It is a yellow crystalline solid that is the caesium salt of chromic acid, and it crystallises in the orthorhombic system.

Contents

Its major application in the past was for the production of caesium vapour during vacuum tube manufacture. [2] Currently it is only used as the precursor for other compounds of academic interest. [3] [4]

Preparation

Caesium chromate is mainly obtained from the reaction of chromium(VI) oxide with caesium carbonate, wherein carbon dioxide gas is evolved: [3]

CrO3(aq) + Cs2CO3(aq) → Cs2CrO4(aq) + CO2(g)

Alternatively, salt metathesis between potassium chromate and caesium chloride can be performed: [4]

K2CrO4(aq) + 2 CsCl(aq) → Cs2CrO4(aq) + 2 KCl(aq)

Finally, caesium dichromate (itself derived via salt metathesis from ammonium dichromate) yields the chromate following alkalinisation with caesium hydroxide: [2]

Cs2Cr2O7(aq) + 2 CsOH(aq) → 2 Cs2CrO4(aq) + H2O(ℓ)

Applications

Caesium chromate was formerly used in the final stages of creating vacuum tubes. Therein, caesium vapour was produced by reaction of caesium chromate with silicon, boron, or titanium as reducing agents. The vapour was then added to the tube to react with and remove remaining gases, including nitrogen and oxygen. [5]

Related Research Articles

<span class="mw-page-title-main">Alkali metal</span> Group of highly reactive chemical elements

The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), and francium (Fr). Together with hydrogen they constitute group 1, which lies in the s-block of the periodic table. All alkali metals have their outermost electron in an s-orbital: this shared electron configuration results in their having very similar characteristic properties. Indeed, the alkali metals provide the best example of group trends in properties in the periodic table, with elements exhibiting well-characterised homologous behaviour. This family of elements is also known as the lithium family after its leading element.

<span class="mw-page-title-main">Caesium</span> Chemical element, symbol Cs and atomic number 55

Caesium is a chemical element; it has symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of 28.5 °C (83.3 °F), which makes it one of only five elemental metals that are liquid at or near room temperature. Caesium has physical and chemical properties similar to those of rubidium and potassium. It is pyrophoric and reacts with water even at −116 °C (−177 °F). It is the least electronegative element, with a value of 0.79 on the Pauling scale. It has only one stable isotope, caesium-133. Caesium is mined mostly from pollucite. Caesium-137, a fission product, is extracted from waste produced by nuclear reactors. It has the largest atomic radius of all elements whose radii have been measured or calculated, at about 260 picometers.

<span class="mw-page-title-main">Rubidium</span> Chemical element, symbol Rb and atomic number 37

Rubidium is a chemical element; it has symbol Rb and atomic number 37. It is a very soft, whitish-grey solid in the alkali metal group, similar to potassium and caesium. Rubidium is the first alkali metal in the group to have a density higher than water. On Earth, natural rubidium comprises two isotopes: 72% is a stable isotope 85Rb, and 28% is slightly radioactive 87Rb, with a half-life of 48.8 billion years—more than three times as long as the estimated age of the universe.

Chromic acid is jargon for a solution of formed by the addition of sulfuric acid to aqueous solutions of dichromate. It consists at least in part of chromium trioxide.

<span class="mw-page-title-main">Chromate and dichromate</span> Chromium(VI) anions

Chromate salts contain the chromate anion, CrO2−
4
. Dichromate salts contain the dichromate anion, Cr
2
O2−
7
. They are oxyanions of chromium in the +6 oxidation state and are moderately strong oxidizing agents. In an aqueous solution, chromate and dichromate ions can be interconvertible.

<span class="mw-page-title-main">Caesium fluoride</span> Chemical compound

Caesium fluoride or cesium fluoride is an inorganic compound with the formula CsF and it is a hygroscopic white salt. Caesium fluoride can be used in organic synthesis as a source of the fluoride anion. Caesium also has the highest electropositivity of all known elements and fluorine has the highest electronegativity of all known elements.

<span class="mw-page-title-main">Caesium chloride</span> Chemical compound

Caesium chloride or cesium chloride is the inorganic compound with the formula CsCl. This colorless salt is an important source of caesium ions in a variety of niche applications. Its crystal structure forms a major structural type where each caesium ion is coordinated by 8 chloride ions. Caesium chloride dissolves in water. CsCl changes to NaCl structure on heating. Caesium chloride occurs naturally as impurities in carnallite, sylvite and kainite. Less than 20 tonnes of CsCl is produced annually worldwide, mostly from a caesium-bearing mineral pollucite.

<span class="mw-page-title-main">Ozonide</span> Polyatomic ion (O3, charge –1), or cyclic compounds made from ozone and alkenes

Ozonide is the polyatomic anion O−3. Cyclic organic compounds formed by the addition of ozone to an alkene are also called ozonides.

<span class="mw-page-title-main">Potassium chromate</span> Chemical compound

Potassium chromate is the inorganic compound with the formula K2CrO4. This yellow solid is the potassium salt of the chromate anion. It is a common laboratory chemical, whereas sodium chromate is important industrially.

<span class="mw-page-title-main">Silver chromate</span> Chemical compound

Silver chromate is an inorganic compound with formula Ag2CrO4 which appears as distinctively coloured brown-red crystals. The compound is insoluble and its precipitation is indicative of the reaction between soluble chromate and silver precursor salts (commonly potassium/sodium chromate with silver nitrate). This reaction is important for two uses in the laboratory: in analytical chemistry it constitutes the basis for the Mohr method of argentometry, whereas in neuroscience it is used in the Golgi method of staining neurons for microscopy.

<span class="mw-page-title-main">Caesium carbonate</span> Chemical compound

Caesium carbonate or cesium carbonate is a chemical compound with the chemical formula Cs2CO3. It is white crystalline solid. Caesium carbonate has a high solubility in polar solvents such as water, ethanol and DMF. Its solubility is higher in organic solvents compared to other carbonates like potassium carbonate and sodium carbonate, although it remains quite insoluble in other organic solvents such as toluene, p-xylene, and chlorobenzene. This compound is used in organic synthesis as a base. It also appears to have applications in energy conversion.

<span class="mw-page-title-main">Chromium compounds</span> Chemical compounds containing chromium

Chromium compounds are compounds containing the element chromium (Cr). Chromium is a member of group 6 of the transition metals. The +3 and +6 states occur most commonly within chromium compounds, followed by +2; charges of +1, +4 and +5 for chromium are rare, but do nevertheless occasionally exist.

<span class="mw-page-title-main">Caesium bromide</span> Chemical compound

Caesium bromide or cesium bromide is an ionic compound of caesium and bromine with the chemical formula CsBr. It is a white or transparent solid with melting point at 636 °C that readily dissolves in water. Its bulk crystals have the cubic CsCl structure, but the structure changes to the rocksalt type in nanometer-thin film grown on mica, LiF, KBr or NaCl substrates.

<span class="mw-page-title-main">Barium ferrate</span> Chemical compound

Barium ferrate is the chemical compound of formula BaFeO4. This is a rare compound containing iron in the +6 oxidation state. The ferrate(VI) ion has two unpaired electrons, making it paramagnetic. It is isostructural with BaSO4, and contains the tetrahedral [FeO4]2− anion.

<span class="mw-page-title-main">Nickel(II) chromate</span> Chemical compound

Nickel(II) chromate (NiCrO4) is an acid-soluble compound, red-brown in color, with high tolerances for heat. It and the ions that compose it have been linked to tumor formation and gene mutation, particularly to wildlife.

<span class="mw-page-title-main">Calcium chromate</span> Chemical compound

Calcium chromate is an inorganic compound with the formula CaCrO4, i.e. the chromate salt of calcium. It is a bright yellow solid which is normally found in the dihydrate form CaCrO4·2H2O. A very rare anhydrous mineral form exists in nature, which is known as chromatite.

<span class="mw-page-title-main">Sodium chromate</span> Chemical compound

Sodium chromate is the inorganic compound with the formula Na2CrO4. It exists as a yellow hygroscopic solid, which can form tetra-, hexa-, and decahydrates. It is an intermediate in the extraction of chromium from its ores.

<span class="mw-page-title-main">Jones oxidation</span> Oxidation of alcohol

The Jones oxidation is an organic reaction for the oxidation of primary and secondary alcohols to carboxylic acids and ketones, respectively. It is named after its discoverer, Sir Ewart Jones. The reaction was an early method for the oxidation of alcohols. Its use has subsided because milder, more selective reagents have been developed, e.g. Collins reagent.

<span class="mw-page-title-main">Titanium perchlorate</span> Chemical compound

Titanium perchlorate is a molecular compound of titanium and perchlorate groups with formula Ti(ClO4)4. Anhydrous titanium perchlorate decomposes explosively at 130 °C and melts at 85 °C with a slight decomposition. It can sublime in a vacuum as low as 70 °C, and can form vapour at up to 120°. Titanium perchlorate is quite volatile. It has density 2.35. It decomposes to TiO2, ClO2 and dioxygen O2 Also TiO(ClO4)2 is formed during decomposition.

Francium compounds are compounds containing the element francium (Fr). Due to francium being very unstable, its salts are only known to a small extent. Francium coprecipitates with several caesium salts, such as caesium perchlorate, which results in small amounts of francium perchlorate. This coprecipitation can be used to isolate francium, by adapting the radiocaesium coprecipitation method of Lawrence E. Glendenin and C. M. Nelson. It will additionally coprecipitate with many other caesium salts, including the iodate, the picrate, the tartrate, the chloroplatinate, and the silicotungstate. It also coprecipitates with silicotungstic acid, and with perchloric acid, without another alkali metal as a carrier, which leads to other methods of separation.

References

  1. Weast, Robert C., ed. (1981). CRC Handbook of Chemistry and Physics (62nd ed.). Boca Raton, FL: CRC Press. p. B-91. ISBN   0-8493-0462-8..
  2. 1 2 Liebhafsky, H. A.; Winslow, A. F. (1947), "Cesium Chromate Photo‐Tube Pellets", Journal of Applied Physics, Journal of Applied Physics, Vol. 18, No. 12, 18 (12): 1128, Bibcode:1947JAP....18.1128L, doi:10.1063/1.1697594
  3. 1 2 Pejov, Ljupčo; Petruševski, Vladimir M (2003-08-01). "Latent symmetry versus accidental degeneracy effects in the vibrational spectra of dopant chromate anions in M2CrxS1−xO4 solid solutions (M∈{K, Rb, Cs})". Journal of Physics and Chemistry of Solids. 64 (8): 1353–1363. doi:10.1016/S0022-3697(03)00160-4. ISSN   0022-3697.
  4. 1 2 Bender, Johannes; Wohlfarth, Andreas; Hoch, Constantin (2010-12-01). "Crystal Structures of New Alkali Metal-rich Oxometallates: Rubidium Aluminate Tetrahydroxide, Rb9(AlO4)(OH)4, Rubidium Orthogallate, Rb5GaO4, Cesiumbis-Chromate(IV) Oxide, Cs10(CrO4)2O, and Cesium Diindate, Cs8In2O7". Zeitschrift für Naturforschung B. 65 (12): 1416–1426. doi: 10.1515/znb-2010-1202 . ISSN   1865-7117. S2CID   12985977.
  5. Emsley, John (2001), Nature's Building Blocks: An A-Z Guide to the Elements, Oxford University Press, p. 81, ISBN   0-19-850340-7 .