Dicaesium silver hexabromobismuthate

Last updated
Dicaesium silver hexabromobismuthate
Sample of dicaesium silver hexabromobismuthate.jpg
Identifiers
3D model (JSmol)
  • InChI=1S/Ag.Bi.6BrH.2Cs/h;;6*1H;;/q+1;+3;;;;;;;2*+1/p-6
    Key: BGOXDRLKIQGIDG-UHFFFAOYSA-H
  • [Cs+].[Cs+].[Ag+].[Bi+3].[Br-].[Br-].[Br-].[Br-].[Br-].[Br-]
Properties
AgBiBr6Cs2
Molar mass 1062.084 g·mol−1
AppearanceOrange crystals
Related compounds
Related compounds
Caesium enneabromodibismuthate
Caesium hexabromobismuthate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Dicaesium silver hexabromobismuthate is an inorganic compound with the formula Cs2AgBiBr6. Being a stable double perovskite material, it is applied to photocatalytic reduction of carbon dioxide. [1]

Synthesis

Dicaesium silver hexabromobismuthate can be synthesized by mixing stoichiometrical caesium bromide, silver bromide and bismuth(III) bromide in 48% hydrobromic acid. [2] Its nanocrystals can be prepared using the hot-injection method in organic solvent at higher temperature. [1]

Related Research Articles

<span class="mw-page-title-main">Bromine</span> Chemical element, symbol Br and atomic number 35

Bromine is a chemical element with the symbol Br and atomic number 35. It is the third-lightest element in group 17 of the periodic table (halogens) and is a volatile red-brown liquid at room temperature that evaporates readily to form a similarly coloured vapour. Its properties are intermediate between those of chlorine and iodine. Isolated independently by two chemists, Carl Jacob Löwig and Antoine Jérôme Balard, its name was derived from the Ancient Greek βρῶμος (bromos) meaning "stench", referring to its sharp and pungent smell.

<span class="mw-page-title-main">Perovskite (structure)</span> Type of crystal structure

A perovskite is any material with a crystal structure following the formula ABX3, which was first discovered as the mineral called perovskite, which consists of calcium titanium oxide (CaTiO3). The mineral was first discovered in the Ural mountains of Russia by Gustav Rose in 1839 and named after Russian mineralogist L. A. Perovski (1792–1856). 'A' and 'B' are two positively charged ions (i.e. cations), often of very different sizes, and X is a negatively charged ion (an anion, frequently oxide) that bonds to both cations. The 'A' atoms are generally larger than the 'B' atoms. The ideal cubic structure has the B cation in 6-fold coordination, surrounded by an octahedron of anions, and the A cation in 12-fold cuboctahedral coordination. Additional perovskite forms may exist where either/both the A and B sites have a configuration of A1x-1A2x and/or B1y-1B2y and the X may deviate from the ideal coordination configuration as ions within the A and B sites undergo changes in their oxidation states.

<span class="mw-page-title-main">Silver nitrate</span> Chemical compound

Silver nitrate is an inorganic compound with chemical formula AgNO
3
. It is a versatile precursor to many other silver compounds, such as those used in photography. It is far less sensitive to light than the halides. It was once called lunar caustic because silver was called luna by ancient alchemists who associated silver with the moon. In solid silver nitrate, the silver ions are three-coordinated in a trigonal planar arrangement.

<span class="mw-page-title-main">Scintillator</span> Type of material

A scintillator is a material that exhibits scintillation, the property of luminescence, when excited by ionizing radiation. Luminescent materials, when struck by an incoming particle, absorb its energy and scintillate. Sometimes, the excited state is metastable, so the relaxation back down from the excited state to lower states is delayed. The process then corresponds to one of two phenomena: delayed fluorescence or phosphorescence. The correspondence depends on the type of transition and hence the wavelength of the emitted optical photon.

In chemistry, halogenation is a chemical reaction that entails the introduction of one or more halogens into a compound. Halide-containing compounds are pervasive, making this type of transformation important, e.g. in the production of polymers, drugs. This kind of conversion is in fact so common that a comprehensive overview is challenging. This article mainly deals with halogenation using elemental halogens (F2, Cl2, Br2, I2). Halides are also commonly introduced using salts of the halides and halogen acids. Many specialized reagents exist for and introducing halogens into diverse substrates, e.g. thionyl chloride.

<span class="mw-page-title-main">Lead(II) iodide</span> Chemical compound

Lead(II) iodide or lead iodide is a chemical compound with the formula PbI
2
. At room temperature, it is a bright yellow odorless crystalline solid, that becomes orange and red when heated. It was formerly called plumbous iodide.

Silver bromide (AgBr) is a soft, pale-yellow, water-insoluble salt well known for its unusual sensitivity to light. This property has allowed silver halides to become the basis of modern photographic materials. AgBr is widely used in photographic films and is believed by some to have been used for making the Shroud of Turin. The salt can be found naturally as the mineral bromargyrite.

Silver molybdate (Ag2MoO4), a chemical compound, is a yellow, cubic crystalline substance often used in glass. Its crystals present two types of electronic structure, depending on the pressure conditions to which the crystal is subjected. At room temperature, Ag2MoO4 exhibits a spinel-type cubic structure, known as β-Ag2MoO4, which is more stable in nature. However, when exposed to high hydrostatic pressure, the tetragonal α-Ag2MoO4 forms as a metastable phase.

<span class="mw-page-title-main">Quantum dot solar cell</span> Type of solar cell based on quantum dot devices

A quantum dot solar cell (QDSC) is a solar cell design that uses quantum dots as the absorbing photovoltaic material. It attempts to replace bulk materials such as silicon, copper indium gallium selenide (CIGS) or cadmium telluride (CdTe). Quantum dots have bandgaps that are tunable across a wide range of energy levels by changing their size. In bulk materials, the bandgap is fixed by the choice of material(s). This property makes quantum dots attractive for multi-junction solar cells, where a variety of materials are used to improve efficiency by harvesting multiple portions of the solar spectrum.

Resistive random-access memory is a type of non-volatile (NV) random-access (RAM) computer memory that works by changing the resistance across a dielectric solid-state material, often referred to as a memristor.

The thallium halides include monohalides, where thallium has oxidation state +1, trihalides in which thallium generally has oxidation state +3, and some intermediate halides containing thallium with mixed +1 and +3 oxidation states. These materials find use in specialized optical settings, such as focusing elements in research spectrophotometers. Compared to the more common zinc selenide-based optics, materials such as thallium bromoiodide enable transmission at longer wavelengths. In the infrared, this allows for measurements as low as 350 cm−1 (28 μm), whereas zinc selenide is opaque by 21.5 μm, and ZnSe optics are generally only usable to 650 cm−1 (15 μm).

<span class="mw-page-title-main">Perovskite solar cell</span> Alternative to silicon-based photovoltaics

A perovskite solar cell (PSC) is a type of solar cell that includes a perovskite-structured compound, most commonly a hybrid organic–inorganic lead or tin halide-based material as the light-harvesting active layer. Perovskite materials, such as methylammonium lead halides and all-inorganic cesium lead halide, are cheap to produce and simple to manufacture.

<span class="mw-page-title-main">Lead bismuthate</span>

Lead bismuthate is a superconductor with the formula Pb(BiO3)2. has only been discovered in recent years in the laboratory as it is not naturally occurring. Lead bismuthate forms a pentavalent structure, significantly different from the regular ionic interactions of sodium bismuthate, but similar to that of strontium bismuthate. In the structure, six oxygen atoms are coordinated octahedrally to both the bismuth and lead atoms. The bismuth and oxygen atoms form negatively charged layers by creating repeating octahedral geometries. The positively charged lead atoms are then disbursed within the layers, forming a hexagonal unit cell, with a lead atom in each of the corners. The density of the crystal is 9.18 g/cm3. The formula weight is 233.99 g/mol. The volume of the crystal structure unit is 169.26 A3. Lattice parameters (a) is 5.321 angstroms.

Quantum dots (QDs) are semiconductor nanoparticles with a size less than 10 nm. They exhibited size-dependent properties especially in the optical absorption and the photoluminescence (PL). Typically, the fluorescence emission peak of the QDs can be tuned by changing their diameters. So far, QDs were consisted of different group elements such as CdTe, CdSe, CdS in the II-VI category, InP or InAs in the III-V category, CuInS2 or AgInS2 in the I–III–VI2 category, and PbSe/PbS in the IV-VI category. These QDs are promising candidates as fluorescent labels in various biological applications such as bioimaging, biosensing and drug delivery.

<span class="mw-page-title-main">Maksym Kovalenko</span>

Maksym V. Kovalenko is a full professor of inorganic chemistry and the head of the Functional Inorganic Materials group at ETH Zurich. A part of the research activities of the group are conducted at Empa (Dübendorf). He is working in the fields of solid-state chemistry, quantum dots and other nanomaterials, surface chemistry, self-assembly, optical spectroscopy, optoelectronics and energy storage.

<span class="mw-page-title-main">Perovskite nanocrystal</span>

Perovskite nanocrystals are a class of semiconductor nanocrystals, which exhibit unique characteristics that separate them from traditional quantum dots. Perovskite nanocrystals have an ABX3 composition where A = cesium, methylammonium (MA), or formamidinium (FA); B = lead or tin; and X = chloride, bromide, or iodide.

The telluride bromides are chemical compounds that contain both telluride ions (Te2−) and bromide ions (Br). They are in the class of mixed anion compounds or chalcogenide halides.

Arsenide bromides or bromide arsenides are compounds containing anions composed of bromide (Br) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide chlorides, arsenide iodides, phosphide bromides, and antimonide bromides.

<span class="mw-page-title-main">Caesium enneabromodibismuthate</span> Chemical compound

Caesium enneabromodibismuthate is an inorganic compound with the formula Cs3Bi2Br9. It is one of the coordination complexes formed by caesium, bismuth and bromine. At room temperature, it is trigonal (P3m1) and it undergoes phase transformation to monoclinic phase (C12/c1) when the temperature is below 96 K.

References

  1. 1 2 Zhou, L., Xu, Y. F., Chen, B. X., Kuang, D. B., & Su, C. Y. (2018). Synthesis and photocatalytic application of stable lead‐free Cs2AgBiBr6perovskite nanocrystals. Small, 14(11), 1703762.
  2. Zhang, Z., Liang, Y., Huang, H., Liu, X., Li, Q., Chen, L., & Xu, D. (2019). Stable and highly efficient photocatalysis with lead‐free double‐perovskite of Cs2AgBiBr6. Angewandte Chemie International Edition, 58(22), 7263-7267.