Caesium bisulfate

Last updated
Caesium bisulfate
EntryWithCollCode85502.png
Caesium-3D.png
Bisulfate-ion-3D-balls.png
Identifiers
3D model (JSmol)
PubChem CID
  • InChI=1S/Cs.H2O4S/c;1-5(2,3)4/h;(H2,1,2,3,4)/q+1;/p-1
    Key: MEAHOQPOZNHISZ-UHFFFAOYSA-M
  • OS(=O)(=O)[O-].[Cs+]
Properties
CsHO4S
Molar mass 229.97 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Caesium bisulfate or cesium hydrogen sulfate is an inorganic compound with the formula CsHSO4. The caesium salt of bisulfate, it is a colorless solid obtained by combining Cs2SO4 and H2SO4. [1]

Contents

Properties

Above 141 °C, CsHSO4 is a superionic conductor. [1] The rapid ionic conductivity arise especially in the range of these temperatures due to the high activity of protons. [2]

Based on the results of X-ray crystallography, the structure consists of tetrahedral sulfate centers that bridge caesium ions. The proton is associated with the oxygen on sulfate. [3]

CsHSO4 goes through three crystalline phases that are referred to as phase III, II, and I. [4] CsHSO4 is initially existing in phase III at a room temperature of 21 °C. Phase III ranges from 21 °C to 90 °C with a transition temperature of 90 °C to 100 °C between phase III and phase II. Phase II ranges from 90 °C to 140 °C. At 140 °C, CsHSO4 undergoes a phase shift from phase II to phase I. [5]

Phase III (21 °C to 90 °C) and Phase II (90 °C to 140 °C) are referred to as the monoclinic phases, in which CsHSO4 exhibits its lowest proton conductivity. As the crystalline structure's temperature is raised, it will show variations in the unit cell volume and the arrangement of its hydrogen bonds, which will alter the ability of a CsHSO4 crystalline structure to allow the displacement of protons.

At 141 °C, the CsHSO4 crystal structure experiences a structural change from monoclinic phase II to a tetragonal phase, becoming phase I. Phase I has more elevated crystal symmetry and widened lattice dimensions. Phase I is noted as the superprotonic phase (strong conducting phase), which triggers an extreme growth in proton conductivity by four orders of magnitude, reaching 10 mS/cm. This makes the conductivity of CsHSO4 ten-fold stronger than the conductivity of a sodium chloride aqueous solution. In the superprotonic phase, the movement of an SO4 tetrahedron generates a disruption of the hydrogen bond network, which accelerates proton transfer. [5] The tetragonal anions available in the structure are accountable for the arrangement of the hydrogen bonds with the moving protons. [6]

Potential applications

The maximum conductivity of pure CsHSO4 is 10 mS/cm, which is too low for practical applications. In composites with SiO2, TiO2, and Al2O3), the proton conductivity below the phase transition temperature is enhanced by a few orders of magnitude. [7]

Unlike hydrated protonic conductors, the absence of water in CsHSO4 provides thermal and electrochemical stability. Electromotive force (EMF) measurements in a humidified oxygen concentration cell verified the high ionic nature of CsHSO4 in its superprotonic phase. [8] Based on heat rotation, the voltage stayed the same for over 85 hours during the measurement, particularly at the high temperature. [8] These results, demonstrate the thermal independence from humidity-type environments. Additionally, the crystal structure of CsHSO4 allows for quick transport of smaller charged ions, resulting in efficient energy transfer in electrochemical devices.

Related Research Articles

<span class="mw-page-title-main">Alkali metal</span> Group of highly reactive chemical elements

The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), and francium (Fr). Together with hydrogen they constitute group 1, which lies in the s-block of the periodic table. All alkali metals have their outermost electron in an s-orbital: this shared electron configuration results in their having very similar characteristic properties. Indeed, the alkali metals provide the best example of group trends in properties in the periodic table, with elements exhibiting well-characterised homologous behaviour. This family of elements is also known as the lithium family after its leading element.

<span class="mw-page-title-main">Ionic compound</span> Chemical compound involving ionic bonding

In chemistry, an ionic compound is a chemical compound composed of ions held together by electrostatic forces termed ionic bonding. The compound is neutral overall, but consists of positively charged ions called cations and negatively charged ions called anions. These can be simple ions such as the sodium (Na+) and chloride (Cl) in sodium chloride, or polyatomic species such as the ammonium (NH+
4
) and carbonate (CO2−
3
) ions in ammonium carbonate. Individual ions within an ionic compound usually have multiple nearest neighbours, so are not considered to be part of molecules, but instead part of a continuous three-dimensional network. Ionic compounds usually form crystalline structures when solid.

<span class="mw-page-title-main">Proton-exchange membrane fuel cell</span> Power generation technology

Proton-exchange membrane fuel cells (PEMFC), also known as polymer electrolyte membrane (PEM) fuel cells, are a type of fuel cell being developed mainly for transport applications, as well as for stationary fuel-cell applications and portable fuel-cell applications. Their distinguishing features include lower temperature/pressure ranges and a special proton-conducting polymer electrolyte membrane. PEMFCs generate electricity and operate on the opposite principle to PEM electrolysis, which consumes electricity. They are a leading candidate to replace the aging alkaline fuel-cell technology, which was used in the Space Shuttle.

<span class="mw-page-title-main">Solid oxide fuel cell</span> Fuel cell that produces electricity by oxidization

A solid oxide fuel cell is an electrochemical conversion device that produces electricity directly from oxidizing a fuel. Fuel cells are characterized by their electrolyte material; the SOFC has a solid oxide or ceramic electrolyte.

<span class="mw-page-title-main">Proton conductor</span> Type of electrolyte

A proton conductor is an electrolyte, typically a solid electrolyte, in which H+ are the primary charge carriers.

<span class="mw-page-title-main">Caesium chloride</span> Chemical compound

Caesium chloride or cesium chloride is the inorganic compound with the formula CsCl. This colorless salt is an important source of caesium ions in a variety of niche applications. Its crystal structure forms a major structural type where each caesium ion is coordinated by 8 chloride ions. Caesium chloride dissolves in water. CsCl changes to NaCl structure on heating. Caesium chloride occurs naturally as impurities in carnallite, sylvite and kainite. Less than 20 tonnes of CsCl is produced annually worldwide, mostly from a caesium-bearing mineral pollucite.

<span class="mw-page-title-main">Protonic ceramic fuel cell</span>

A protonic ceramic fuel cell or PCFC is a fuel cell based around a ceramic, solid, electrolyte material as the proton conductor from anode to cathode. These fuel cells produce electricity by removing an electron from a hydrogen atom, pushing the charged hydrogen atom through the ceramic membrane, and returning the electron to the hydrogen on the other side of the ceramic membrane during a reaction with oxygen. The reaction of many proposed fuels in PCFCs produce electricity and heat, the latter keeping the device at a suitable temperature. Efficient proton conductivity through most discovered ceramic electrolyte materials require elevated operational temperatures around 600-700 degrees Celsius, however intermediate temperature ceramic fuel cells and lower temperature alternative are an active area of research. In addition to hydrogen gas, the ability to operate at intermediate and high temperatures enables the use of a variety of liquid hydrogen carrier fuels, including: ammonia, and methane. The technology shares the thermal and kinetic advantages of high temperature molten carbonate and solid oxide fuel cells, while exhibiting all of the intrinsic benefits of proton conduction in proton exchange membrane fuel cells (PEMFC) and phosphoric acid fuel cells (PAFC). PCFCs exhaust water at the cathode and unused fuel, fuel reactant products and fuel impurities at the anode. Common chemical compositions of the ceramic membranes are barium zirconate (BaZrO3), cesium dihydrogen phosphate (CsH2PO4), and complex solid solutions of those materials with other ceramic oxides. The acidic oxide ceramics are sometimes broken into their own class of protonic ceramic fuel cells termed "solid acid fuel cells".

Indium(III) sulfate (In2(SO4)3) is a sulfate salt of the metal indium. It is a sesquisulfate, meaning that the sulfate group occurs 11/2 times as much as the metal. It may be formed by the reaction of indium, its oxide, or its carbonate with sulfuric acid. An excess of strong acid is required, otherwise insoluble basic salts are formed. As a solid indium sulfate can be anhydrous, or take the form of a pentahydrate with five water molecules or a nonahydrate with nine molecules of water. Indium sulfate is used in the production of indium or indium containing substances. Indium sulfate also can be found in basic salts, acidic salts or double salts including indium alum.

<span class="mw-page-title-main">Fast ion conductor</span>

In materials science, fast ion conductors are solid conductors with highly mobile ions. These materials are important in the area of solid state ionics, and are also known as solid electrolytes and superionic conductors. These materials are useful in batteries and various sensors. Fast ion conductors are used primarily in solid oxide fuel cells. As solid electrolytes they allow the movement of ions without the need for a liquid or soft membrane separating the electrodes. The phenomenon relies on the hopping of ions through an otherwise rigid crystal structure.

<span class="mw-page-title-main">Ammonium bisulfate</span> Chemical compound

Ammonium bisulfate, also known as ammonium hydrogen sulfate, is a white, crystalline solid with the formula (NH4)HSO4. This salt is the product of the half-neutralization of sulfuric acid by ammonia.

<span class="mw-page-title-main">Ionic conductivity (solid state)</span>

Ionic conductivity is a measure of a substance's tendency towards ionic conduction. Ionic conduction is the movement of ions. The phenomenon is observed in solids and solutions. Ionic conduction is one mechanism of current.

An advanced superionic conductor (AdSIC) in materials science, is fast ion conductor that has a crystal structure close to optimal for fast ion transport (FIT).

<span class="mw-page-title-main">Yttria-stabilized zirconia</span> Ceramic with room temperature stable cubic crystal structure

Yttria-stabilized zirconia (YSZ) is a ceramic in which the cubic crystal structure of zirconium dioxide is made stable at room temperature by an addition of yttrium oxide. These oxides are commonly called "zirconia" (ZrO2) and "yttria" (Y2O3), hence the name.

<span class="mw-page-title-main">Solid state ionics</span>

Solid-state ionics is the study of ionic-electronic mixed conductor and fully ionic conductors and their uses. Some materials that fall into this category include inorganic crystalline and polycrystalline solids, ceramics, glasses, polymers, and composites. Solid-state ionic devices, such as solid oxide fuel cells, can be much more reliable and long-lasting, especially under harsh conditions, than comparable devices with fluid electrolytes.

Sossina M. Haile is an American chemist, known for developing the first solid acid fuel cells. She is a professor of Materials Science and Engineering at Northwestern University, Illinois, USA.

Rubidium hydrogen sulfate, sometimes referred to as rubidium bisulfate, is the half neutralized rubidium salt of sulfuric acid. It has the formula RbHSO4.

Solid acid fuel cells (SAFCs) are a class of fuel cells characterized by the use of a solid acid material as the electrolyte. Similar to proton exchange membrane fuel cells and solid oxide fuel cells, they extract electricity from the electrochemical conversion of hydrogen- and oxygen-containing gases, leaving only water as a byproduct. Current SAFC systems use hydrogen gas obtained from a range of different fuels, such as industrial-grade propane and diesel. They operate at mid-range temperatures, from 200 to 300 °C.

<span class="mw-page-title-main">Solid-state electrolyte</span>

A solid-state electrolyte (SSE) is a solid ionic conductor and electron-insulating material and it is the characteristic component of the solid-state battery. It is useful for applications in electrical energy storage (EES) in substitution of the liquid electrolytes found in particular in lithium-ion battery. The main advantages are the absolute safety, no issues of leakages of toxic organic solvents, low flammability, non-volatility, mechanical and thermal stability, easy processability, low self-discharge, higher achievable power density and cyclability. This makes possible, for example, the use of a lithium metal anode in a practical device, without the intrinsic limitations of a liquid electrolyte thanks to the property of lithium dendrite suppression in the presence of a solid-state electrolyte membrane. The utilization of a high capacity anode and low reduction potential, like lithium with a specific capacity of 3860 mAh g−1 and a reduction potential of -3.04 V vs SHE, in substitution of the traditional low capacity graphite, which exhibits a theoretical capacity of 372 mAh g−1 in its fully lithiated state of LiC6, is the first step in the realization of a lighter, thinner and cheaper rechargeable battery. Moreover, this allows the reach of gravimetric and volumetric energy densities, high enough to achieve 500 miles per single charge in an electric vehicle. Despite the promising advantages, there are still many limitations that are hindering the transition of SSEs from academia research to large-scale production, depending mainly on the poor ionic conductivity compared to that of liquid counterparts. However, many car OEMs (Toyota, BMW, Honda, Hyundai) expect to integrate these systems into viable devices and to commercialize solid-state battery-based electric vehicles by 2025.

<span class="mw-page-title-main">Lithium aluminium germanium phosphate</span> Chemical compound

Lithium aluminium germanium phosphate, typically known with the acronyms LAGP or LAGPO, is an inorganic ceramic solid material whose general formula is Li
1+x
Al
x
Ge
2-x
(PO
4
)
3
. LAGP belongs to the NASICON family of solid conductors and has been applied as a solid electrolyte in all-solid-state lithium-ion batteries. Typical values of ionic conductivity in LAGP at room temperature are in the range of 10–5 - 10–4 S/cm, even if the actual value of conductivity is strongly affected by stoichiometry, microstructure, and synthesis conditions. Compared to lithium aluminium titanium phosphate (LATP), which is another phosphate-based lithium solid conductor, the absence of titanium in LAGP improves its stability towards lithium metal. In addition, phosphate-based solid electrolytes have superior stability against moisture and oxygen compared to sulfide-based electrolytes like Li
10
GeP
2
S
12
(LGPS) and can be handled safely in air, thus simplifying the manufacture process. Since the best performances are encountered when the stoichiometric value of x is 0.5, the acronym LAGP usually indicates the particular composition of Li
1.5
Al
0.5
Ge
1.5
(PO
4
)
3
, which is also the typically used material in battery applications.

The phosphate sulfates are mixed anion compounds containing both phosphate and sulfate ions. Related compounds include the arsenate sulfates, phosphate selenates, and arsenate selenates.

References

  1. 1 2 Haile, Sossina M.; Boysen, Dane A.; Chisholm, Calum R. I.; Merle, Ryan B. (2001). "Solid acids as fuel cell electrolytes" (PDF). Nature. 410 (6831): 910–913. Bibcode:2001Natur.410..910H. doi:10.1038/35073536. PMID   11309611. S2CID   4430178.
  2. Sinitsyn, V. V. (2010). "Pressure effect on phase transitions in MeHAO4 superprotonic conductors (A = S, Se and Me = NH4, Rb, Cs)". Journal of Materials Chemistry. 20 (30): 6226–6234. doi:10.1039/c0jm00052c.
  3. Balagurov, A.M.; Beskrovnyi, A.I.; Savenko, B.N.; Merinov, B.V.; Dlouha, M.; Vratislav, S.; Jirak (1987). "The room temperature structure of deuterated CsHSO4 and CsHSeO4". Physica Status Solidi A. 100 (1): 3–7. Bibcode:1987PSSAR.100....3B. doi:10.1002/pssa.2211000146.
  4. Maja Mroczkowska-Szerszeń, Maciej Siekierski, Rafał Letmanowski, Michał Piszcz, Renata Cicha-Szot, Lidia Dudek, Sławomir Falkowicz, Grażyna Żukowska, and Magda Dudek. "Spectroscopic Verification of Extended Temperature Stability of Superionic Phase Obtained in Mechanosyntehsis Process for CsHSO4/Phospho-silicate Glass Composite." Oil and Gas Institute, Ul. Lubicz 25a, 31-503 Cracow, Poland/Warsaw University of Technology Faculty of Chemistry, Inorganic Chemistry and Solid State Technology Division Ul.Noakowskiego 3, 00-640 Warsaw, Poland 3AGH – University of Science and Technology, Faculty of Fuels and Energy, Al. Mickiewicza 30, 30-059 Cracow, Poland, n.d. Web.
  5. 1 2 Otomo, Junichiro; Shigeoka, Hitoshi; Nagamoto, Hidetoshi; Takahashi, Hiroshi (2005). "Phase transition behavior and proton conduction mechanism in cesium hydrogen sulfate/silica composite". Journal of Physics and Chemistry of Solids. 66 (1): 21–30. Bibcode:2005JPCS...66...21O. doi:10.1016/j.jpcs.2004.07.006.
  6. Chan, Wing Kee. Structure and dynamics of hydrogen in nanocomposite solid acids for fuel cell applications. TU Delft, Delft University of Technology, 2011.
  7. Hiroki Muroyama, Toshiaki Matsui, Ryuji Kikuchi, and Koichi Eguchi. "Composite Effect on the Structure and Proton Conductivity for CsHSO4 Electrolytes at Intermediate Temperatures." (n.d.): n. pag. Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan, 13 Apr. 2006. Web.
  8. 1 2 Uda, Tetsuya, Dane A. Boysen, and Sossina M. Haile. "Thermodynamic, thermomechanical, and electrochemical evaluation of CsHSO 4." Solid State Ionics 176.1 (2005): 127-133.