Cornforth reagent

Last updated
Cornforth reagent
Pyridinium dichromate.svg
Pyridinium dichromate 3D ball.png
Names
Other names
Pyridinium dichromate
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.039.511 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 243-478-8
PubChem CID
UNII
  • InChI=1S/2C5H5N.2Cr.7O/c2*1-2-4-6-5-3-1;;;;;;;;;/h2*1-5H;;;;;;;;;/q;;;;;;;;;2*-1/p+2 X mark.svgN
    Key: LMYWWPCAXXPJFF-UHFFFAOYSA-P X mark.svgN
  • InChI=1/2C5H5N.2Cr.7O/c2*1-2-4-6-5-3-1;;;;;;;;;/h2*1-5H;;;;;;;;;/q;;;;;;;;;2*-1/p+2/r2C5H5N.Cr2O7/c2*1-2-4-6-5-3-1;3-1(4,5)9-2(6,7)8/h2*1-5H;/q;;-2/p+2
    Key: LMYWWPCAXXPJFF-OXLJHMOQAP
  • [O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O.c1cc[nH+]cc1.[nH+]1ccccc1
Properties
C10H12N2Cr2O7
Molar mass 376.2 g/mol
Appearanceorange to brown solid [1]
Boiling point 145 to 147 °C (293 to 297 °F; 418 to 420 K) [1]
soluble in water [1]
Hazards
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-rondflam.svg GHS-pictogram-acid.svg GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
Danger
H228, H272, H314, H315, H317, H319, H350, H410
P201, P202, P210, P220, P221, P240, P241, P260, P261, P264, P272, P273, P280, P281, P301+P330+P331, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P308+P313, P310, P321, P332+P313, P333+P313, P337+P313, P362, P363, P370+P378, P391, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

The Cornforth reagent (pyridinium dichromate or PDC) is a pyridinium salt of dichromate with the chemical formula [C5H5NH]2[Cr2O7]. This compound is named after the Australian-British chemist Sir John Warcup Cornforth (b. 1917) who introduced it in 1962. [2] [3] The Cornforth reagent is a strong oxidizing agent which can convert primary and secondary alcohols to aldehydes and ketones respectively. In its chemical structure and functions it is closely related to other compounds made from hexavalent chromium oxide, such as pyridinium chlorochromate and Collins reagent. Because of their toxicity, these reagents are rarely used nowadays. [4]

Contents

Synthesis and properties

The Cornforth reagent is prepared by slow addition of a concentrated aqueous solution of chromium trioxide to pyridine. The reaction may cause explosion, which is avoided by thoroughly dissolving the trioxide in water and cooling the solution by ice. The product is filtered, washed with acetone and dried, yielding an orange powder. The powder is stable in air, not particularly hygroscopic and has an almost neutral pH that facilitates its handling; it is only slightly acidic owing to the presence of pyridinium cations. The Cornforth reagent is readily soluble in water, dimethylformamide and dimethyl sulfoxide (DMSO). It is poorly soluble in acetone and chlorinated organic solvents, such as dichloromethane, and forms suspensions. [4] [5]

Applications

The Cornforth reagent is a strong oxidizing agent which can convert primary alcohols to aldehydes and secondary alcohols to ketones, both as a solution or suspension. This application was first mentioned in 1969, but fully developed only in 1979 by E. J. Corey and G. Schmidt. They mentioned that reaction of saturated primary alcohols with PDC, using dimethylformamide as solvent, results in oxidation to carboxylic acids rather than aldehydes. However, no oxidation to carboxylic acids occurs on allylic and benzylic primary alcohols. [6]

Oxidation of alcohol by PDC in DMF.svg

The oxidation is usually carried out at ambient conditions, in nearly neutral pH conditions, in dimethylformamide or dichloromethane or their mixture. The choice of solvent or their ratio affects the reaction rate; in particular, higher content of dimethylformamide results in stronger oxidation. The slow oxidation rate for some alcohols can be accelerated by the addition of molecular sieves, organic acids or acetic anhydride or of their combinations. The acceleration by molecular sieves works best when their pore diameter is about 0.3 nm, and it is apparently unrelated to their water absorption capability. Among organic acids, acetic acid, pyridinium trifluoroacetate or pyridinium tosylate can be added, the first one being most efficient and easiest to remove. The achieved acceleration is remarkable, but the reaction inevitably turns from neutral (pH) to acidic. Comparable acceleration is achieved with acetic anhydride, which is used in sugar and nucleoside chemistry. Reaction acceleration depends not only on the additives but also on their form, so all reagents are preferred dry and freshly prepared, and PDC and molecular sieves should be finely ground. The disadvantage of the accelerators is that they may simultaneously promote several oxidation routes thereby reducing the selectivity of the reaction. [4] [5]

In its chemical structure and functions, the Cornforth reagent is closely related to other pyridinium salts of hexavalent chromium oxide, such as pyridinium chlorochromate [PyH][CrO3Cl] and to pyridine complexes such as the Collins reagent, CrO3·2Py in dichloromethane and the Sarret reagent, CrO3·2Py in pyridine. [4]

Safety issues

The Cornforth reagent is very toxic to aquatic life and may cause long-term damage to the environment if released in large amounts. It irritates skin and mucous membranes and may induce allergic reactions; it is carcinogenic. The maximum allowable concentration varies between 0.01 and 0.1 mg·m−3 in air depending on the country. Because it contains hexavalent chromium, it is a suspected carcinogen, and as a strong oxidant, pyridinium dichromate promotes fires, releasing carbon monoxide, carbon dioxide and toxic metal smoke. The fire can be extinguished by water or CO2. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Carboxylic acid</span> Organic compound containing a –C(=O)OH group

In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group attached to an R-group. The general formula of a carboxylic acid is often written as R−COOH or R−CO2H, sometimes as R−C(O)OH with R referring to an organyl group, or hydrogen, or other groups. Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.

<span class="mw-page-title-main">Aldehyde</span> Organic compound containing the functional group R−CH=O

In organic chemistry, an aldehyde is an organic compound containing a functional group with the structure R−CH=O. The functional group itself can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many chemicals important in technology and biology.

In organic chemistry, the Swern oxidation, named after Daniel Swern, is a chemical reaction whereby a primary or secondary alcohol is oxidized to an aldehyde or ketone using oxalyl chloride, dimethyl sulfoxide (DMSO) and an organic base, such as triethylamine. It is one of the many oxidation reactions commonly referred to as 'activated DMSO' oxidations. The reaction is known for its mild character and wide tolerance of functional groups.

<span class="mw-page-title-main">Oxidizing agent</span> Chemical compound used to oxidize another substance in a chemical reaction

An oxidizing agent is a substance in a redox chemical reaction that gains or "accepts"/"receives" an electron from a reducing agent. In other words, an oxidizer is any substance that oxidizes another substance. The oxidation state, which describes the degree of loss of electrons, of the oxidizer decreases while that of the reductant increases; this is expressed by saying that oxidizers "undergo reduction" and "are reduced" while reducers "undergo oxidation" and "are oxidized". Common oxidizing agents are oxygen, hydrogen peroxide, and the halogens.

Chromic acid is jargon for a solution formed by the addition of sulfuric acid to aqueous solutions of dichromate. It consists at least in part of chromium trioxide.

<span class="mw-page-title-main">Potassium dichromate</span> Chemical compound

Potassium dichromate, K2Cr2O7, is a common inorganic chemical reagent, most commonly used as an oxidizing agent in various laboratory and industrial applications. As with all hexavalent chromium compounds, it is acutely and chronically harmful to health. It is a crystalline ionic solid with a very bright, red-orange color. The salt is popular in laboratories because it is not deliquescent, in contrast to the more industrially relevant salt sodium dichromate.

<span class="mw-page-title-main">Pyridinium chlorochromate</span> Chemical compound

Pyridinium chlorochromate (PCC) is a yellow-orange salt with the formula [C5H5NH]+[CrO3Cl]. It is a reagent in organic synthesis used primarily for oxidation of alcohols to form carbonyls. A variety of related compounds are known with similar reactivity. PCC offers the advantage of the selective oxidation of alcohols to aldehydes or ketones, whereas many other reagents are less selective.

<span class="mw-page-title-main">Chromium trioxide</span> Chemical compound

Chromium trioxide is an inorganic compound with the formula CrO3. It is the acidic anhydride of chromic acid, and is sometimes marketed under the same name. This compound is a dark-purple solid under anhydrous conditions and bright orange when wet. The substance dissolves in water accompanied by hydrolysis. Millions of kilograms are produced annually, mainly for electroplating. Chromium trioxide is a powerful oxidiser, a mutagen, and a carcinogen.

<span class="mw-page-title-main">Dess–Martin periodinane</span> Chemical reagent

Dess–Martin periodinane (DMP) is a chemical reagent used in the Dess–Martin oxidation, oxidizing primary alcohols to aldehydes and secondary alcohols to ketones. This periodinane has several advantages over chromium- and DMSO-based oxidants that include milder conditions, shorter reaction times, higher yields, simplified workups, high chemoselectivity, tolerance of sensitive functional groups, and a long shelf life. However, use on an industrial scale is made difficult by its cost and its potentially explosive nature. It is named after the American chemists Daniel Benjamin Dess and James Cullen Martin who developed the reagent in 1983. It is based on IBX, but due to the acetate groups attached to the central iodine atom, DMP is much more reactive than IBX and is much more soluble in organic solvents.

<span class="mw-page-title-main">Nicolaou Taxol total synthesis</span> Paper on taxol synthesis

The Nicolaou Taxol total synthesis, published by K. C. Nicolaou and his group in 1994 concerns the total synthesis of taxol. Taxol is an important drug in the treatment of cancer but also expensive because the compound is harvested from a scarce resource, namely the pacific yew.

<span class="mw-page-title-main">Danishefsky Taxol total synthesis</span>

The Danishefsky Taxol total synthesis in organic chemistry is an important third Taxol synthesis published by the group of Samuel Danishefsky in 1996 two years after the first two efforts described in the Holton Taxol total synthesis and the Nicolaou Taxol total synthesis. Combined they provide a good insight in the application of organic chemistry in total synthesis.

<span class="mw-page-title-main">Sarett oxidation</span> Organic reaction

The Sarett oxidation is an organic reaction that oxidizes primary and secondary alcohols to aldehydes and ketones, respectively, using chromium trioxide and pyridine. Unlike the similar Jones oxidation, the Sarett oxidation will not further oxidize primary alcohols to their carboxylic acid form, neither will it affect carbon-carbon double bonds. Use of the original Sarett oxidation has become largely antiquated however, in favor of other modified oxidation techniques. The unadulterated reaction is still occasionally used in teaching settings and in small scale laboratory research.

<span class="mw-page-title-main">Collins reagent</span> Chemical compound

Collins reagent is the complex of chromium(VI) oxide with pyridine in dichloromethane. This metal-pyridine complex, a red solid, is used to oxidize primary alcohols to the corresponding aldehydes and secondary alcohols to the corresponding ketones. This complex is a hygroscopic orange solid.

The Parikh–Doering oxidation is an oxidation reaction that transforms primary and secondary alcohols into aldehydes and ketones, respectively. The procedure uses dimethyl sulfoxide (DMSO) as the oxidant and the solvent, activated by the sulfur trioxide pyridine complex (SO3•C5H5N) in the presence of triethylamine or diisopropylethylamine as base. Dichloromethane is frequently used as a cosolvent for the reaction.

<span class="mw-page-title-main">Dess–Martin oxidation</span>

The Dess–Martin oxidation is an organic reaction for the oxidation of primary alcohols to aldehydes and secondary alcohols to ketones using Dess–Martin periodinane. It is named after the American chemists Daniel Benjamin Dess and James Cullen Martin who developed the periodinane reagent in 1983.

Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters where the carbon carries a higher oxidation state. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids.

Oxidation with chromium(VI) complexes involves the conversion of alcohols to carbonyl compounds or more highly oxidized products through the action of molecular chromium(VI) oxides and salts. The principal reagents are Collins reagent, PDC, and PCC. These reagents represent improvements over inorganic chromium(VI) reagents such as Jones reagent.

<span class="mw-page-title-main">Jones oxidation</span> Oxidation of alcohol

The Jones oxidation is an organic reaction for the oxidation of primary and secondary alcohols to carboxylic acids and ketones, respectively. It is named after its discoverer, Sir Ewart Jones. The reaction was an early method for the oxidation of alcohols. Its use has subsided because milder, more selective reagents have been developed, e.g. Collins reagent.

<span class="mw-page-title-main">Collins oxidation</span>

The Collins oxidation is an organic reaction for the oxidation of primary alcohols to aldehydes. It is distinguished from other chromium oxide-based oxidations by the use of Collins reagent, a complex of chromium(VI) oxide with pyridine in dichloromethane.

<span class="mw-page-title-main">Babler oxidation</span>

The Babler oxidation, also known as the Babler-Dauben oxidation, is an organic reaction for the oxidative transposition of tertiary allylic alcohols to enones using pyridinium chlorochromate (PCC):

References

  1. 1 2 3 4 Pyridinium dichromate, MSDS, Alfa Caesar
  2. Alexander Senning Elsevier's dictionary of chemoetymology: the whies and whences of chemical nomenclature and terminology, Elsevier, 2007, ISBN   0-444-52239-5 p. 94
  3. Cornforth, R.H.; Cornforth, J.W.; Popjak, G. (1962). "Preparation of R-and S-mevalonolactones". Tetrahedron. 18 (12): 1351–4. doi:10.1016/S0040-4020(01)99289-0.
  4. 1 2 3 4 G. Tojo; M. Fernâandez (2006). Oxidation of alcohols to aldehydes and ketones: a guide to current common practice. New York: Springer. pp. 28, 29, 86. ISBN   0-387-23607-4.
  5. 1 2 Steven V. Ley Oxidation, Elsevier, 1992, ISBN   0-08-040598-3 p. 272
  6. Corey, E.J.; Schmidt, G. (1979). "Useful procedures for the oxidation of alcohols involving pyridinium dichromate in approtic media". Tetrahedron Lett. 20 (52): 399. doi:10.1016/S0040-4039(01)93515-4.