Xenon oxydifluoride

Last updated
Xenon oxydifluoride
Xenon oxydifluoride.png
Names
IUPAC name
difluoro(oxo)xenon
Identifiers
3D model (JSmol)
PubChem CID
  • InChI=1S/F2OXe/c1-4(2)3
    Key: AJCPXXGFGZRPPK-UHFFFAOYSA-N
  • O=[Xe](F)F
Properties
F2OXe
Molar mass 185.289 g·mol−1
Structure
T-shape
Related compounds
Related compounds
Xenon oxytetrafluoride
Xenon dioxydifluoride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Xenon oxydifluoride is an inorganic compound with the molecular formula XeOF2. The first definitive isolation of the compound was published on 3 March 2007, producing it by the previously-examined route of partial hydrolysis of xenon tetrafluoride. [1]

XeF4 + H2O → XeOF2 + 2 HF

The compound has a T-shaped geometry and does not form polymers, though it does form an adduct with acetonitrile and with hydrogen fluoride. [1]

Although stable at low temperatures, it rapidly decomposes upon warming, either by losing the oxygen atom or by disproportionating into xenon difluoride and xenon dioxydifluoride: [1]

2 XeOF2 → 2 XeF2 + O2
2 XeOF2 → XeF2 + XeO2F2

Xenon oxytetrafluoride (XeOF4) is primarily used as a powerful oxidizing agent in organic synthesis and fluorination reactions. It is also used in the semiconductor industry for etching silicon surfaces and in the production of specialty chemicals. Additionally, it has potential applications in the field of materials science and as a reagent in chemical research.

Related Research Articles

<span class="mw-page-title-main">Xenon</span> Chemical element, symbol Xe and atomic number 54

Xenon is a chemical element; it has symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as the formation of xenon hexafluoroplatinate, the first noble gas compound to be synthesized.

<span class="mw-page-title-main">Xenon hexafluoroplatinate</span> Chemical compound

Xenon hexafluoroplatinate is the product of the reaction of platinum hexafluoride with xenon, in an experiment that proved the chemical reactivity of the noble gases. This experiment was performed by Neil Bartlett at the University of British Columbia, who formulated the product as "Xe+[PtF6]", although subsequent work suggests that Bartlett's product was probably a salt mixture and did not in fact contain this specific salt.

In chemistry, noble gas compounds are chemical compounds that include an element from the noble gases, group 18 of the periodic table. Although the noble gases are generally unreactive elements, many such compounds have been observed, particularly involving the element xenon.

<span class="mw-page-title-main">Oxygen difluoride</span> Chemical compound

Oxygen difluoride is a chemical compound with the formula OF2. As predicted by VSEPR theory, the molecule adopts a bent molecular geometry. It is a strong oxidizer and has attracted attention in rocketry for this reason. With a boiling point of −144.75 °C, OF2 is the most volatile (isolable) triatomic compound. The compound is one of many known oxygen fluorides.

<span class="mw-page-title-main">Oxygen fluoride</span> Any binary compound of oxygen and fluorine

Oxygen fluorides are compounds of elements oxygen and fluorine with the general formula OnF2, where n = 1 to 6. Many different oxygen fluorides are known:

<span class="mw-page-title-main">Xenon tetrafluoride</span> Chemical compound

Xenon tetrafluoride is a chemical compound with chemical formula XeF
4
. It was the first discovered binary compound of a noble gas. It is produced by the chemical reaction of xenon with fluorine:

<span class="mw-page-title-main">Xenon hexafluoride</span> Chemical compound

Xenon hexafluoride is a noble gas compound with the formula XeF6. It is one of the three binary fluorides of xenon that have been studied experimentally, the other two being XeF2 and XeF4. All known are exergonic and stable at normal temperatures. XeF6 is the strongest fluorinating agent of the series. It is a colorless solid that readily sublimes into intensely yellow vapors.

<span class="mw-page-title-main">Silver(II) fluoride</span> Chemical compound

Silver(II) fluoride is a chemical compound with the formula AgF2. It is a rare example of a silver(II) compound - silver usually exists in its +1 oxidation state. It is used as a fluorinating agent.

<span class="mw-page-title-main">Iron(III) fluoride</span> Chemical compound

Iron(III) fluoride, also known as ferric fluoride, are inorganic compounds with the formula FeF3(H2O)x where x = 0 or 3. They are mainly of interest by researchers, unlike the related iron(III) chloride. Anhydrous iron(III) fluoride is white, whereas the hydrated forms are light pink.

<span class="mw-page-title-main">Xenon difluoride</span> Chemical compound

Xenon difluoride is a powerful fluorinating agent with the chemical formula XeF
2
, and one of the most stable xenon compounds. Like most covalent inorganic fluorides it is moisture-sensitive. It decomposes on contact with water vapor, but is otherwise stable in storage. Xenon difluoride is a dense, colourless crystalline solid.

Xenon compounds are compounds containing the element xenon (Xe). After Neil Bartlett's discovery in 1962 that xenon can form chemical compounds, a large number of xenon compounds have been discovered and described. Almost all known xenon compounds contain the electronegative atoms fluorine or oxygen. The chemistry of xenon in each oxidation state is analogous to that of the neighboring element iodine in the immediately lower oxidation state.

<span class="mw-page-title-main">Xenon oxytetrafluoride</span> Chemical compound

Xenon oxytetrafluoride is an inorganic chemical compound. It is an unstable colorless liquid with a melting point of −46.2 °C that can be synthesized by partial hydrolysis of XeF
6
, or the reaction of XeF
6
with silica or NaNO
3
:

<span class="mw-page-title-main">Dioxygenyl</span> Chemical compound

The dioxygenyl ion, O+
2
, is a rarely-encountered oxycation in which both oxygen atoms have a formal oxidation state of +1/2. It is formally derived from oxygen by the removal of an electron:

Organoxenon chemistry is the study of the properties of organoxenon compounds, which contain carbon to xenon chemical bonds. The first organoxenon compounds were divalent, such as (C6F5)2Xe. The first tetravalent organoxenon compound, [C6F5XeF2][BF4], was synthesized in 2004. So far, more than one hundred organoxenon compounds have been researched.

Fluorine forms a great variety of chemical compounds, within which it always adopts an oxidation state of −1. With other atoms, fluorine forms either polar covalent bonds or ionic bonds. Most frequently, covalent bonds involving fluorine atoms are single bonds, although at least two examples of a higher order bond exist. Fluoride may act as a bridging ligand between two metals in some complex molecules. Molecules containing fluorine may also exhibit hydrogen bonding. Fluorine's chemistry includes inorganic compounds formed with hydrogen, metals, nonmetals, and even noble gases; as well as a diverse set of organic compounds. For many elements the highest known oxidation state can be achieved in a fluoride. For some elements this is achieved exclusively in a fluoride, for others exclusively in an oxide; and for still others the highest oxidation states of oxides and fluorides are always equal.

Xenon nitrate, also called xenon dinitrate, is an inorganic compound consisting of one xenon atom bonded to two nitrate groups. It can be made by reacting xenon difluoride with anhydrous nitric acid, but it only exists transiently before decomposing, and therefore it has not been isolated and full characterized. A related compound, xenon fluoride nitrate, has been made and is stable enough to be studied in more detail.

<span class="mw-page-title-main">Xenon fluoride nitrate</span> Chemical compound

Xenon fluoride nitrate, also known as fluoroxenonium nitrate, is the chemical compound with formula FXeONO2.

Vapor etching refers to a process used in the fabrication of Microelectromechanical systems (MEMS) and Nanoelectromechanical systems (NEMS). Sacrificial layers are isotropically etched using gaseous acids such as Hydrogen fluoride and Xenon difluoride to release the free standing components of the device.

<span class="mw-page-title-main">Radon compounds</span>

Radon compounds are chemical compounds formed by the element radon (Rn). Radon is a noble gas, i.e. a zero-valence element, and is chemically not very reactive. The 3.8-day half-life of radon-222 makes it useful in physical sciences as a natural tracer. Because radon is a gas under normal circumstances, and its decay-chain parents are not, it can readily be extracted from them for research.

<span class="mw-page-title-main">Seleninyl fluoride</span> Chemical compound

Seleninyl fluoride is an oxyfluoride of selenium with the chemical formula SeOF2.

References

  1. 1 2 3 Brock, David S.; Bilir, Vural; Mercier, Hélène P. A.; Schrobilgen, Gary J. (2007). "XeOF2, F2OXeN≡CCH3, and XeOF2·nHF: Rare Examples of Xe(IV) Oxide Fluorides". Journal of the American Chemical Society. 129 (12): 3598–3611. doi:10.1021/ja0673480. PMID   17335282.