Thionyl fluoride

Last updated
Thionyl fluoride
Ball-and-stick model SOF2.png
Ball-and-stick model
structure Thionyl-fluoride-3D-balls.png
structure
Names
IUPAC name
Thionyl fluoride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.029.088 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 231-997-2
PubChem CID
UNII
  • InChI=1S/F2OS/c1-4(2)3 Yes check.svgY
    Key: LSJNBGSOIVSBBR-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/F2OS/c1-4(2)3
    Key: LSJNBGSOIVSBBR-UHFFFAOYAL
  • FS(F)=O
Properties
F2OS
Molar mass 86.06 g·mol−1
Appearancecolorless gas
Melting point −110.5 °C (−166.9 °F; 162.7 K)
Boiling point −43.8 °C (−46.8 °F; 229.3 K)
hydrolysis
Solubility soluble in ethanol, ether, benzene
Vapor pressure 75.7 kPa (-50 °C) [1]
Structure
trigonal pyramidal
Thermochemistry [2] [ better source needed ]
Std molar
entropy
(S298)
278.6 J/mol·K
-715 kJ/mol
56.8 J/mol·K
Hazards
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-skull.svg
Danger
H300, H310, H314, H330
P260, P262, P264, P270, P271, P280, P284, P301+P310, P301+P330+P331, P302+P350, P303+P361+P353, P304+P340, P305+P351+P338, P310, P320, P321, P322, P330, P361, P363, P403+P233, P405, P501
Related compounds
Related oxohalides
Thionyl chloride
Thionyl bromide
Related compounds
Nitrosyl fluoride
Carbonyl fluoride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Thionyl fluoride is the inorganic compound with the formula S O F 2. This colourless gas is mainly of theoretical interest, but it is a product of the degradation of sulfur hexafluoride, an insulator in electrical equipment. The molecule adopts a distorted pyramidal structure, with Cs symmetry. The S-O and S-F distances are 1.42 and 1.58 Å, respectively. The O-S-F and F-S-F angles are 106.2 and 92.2°, respectively. [3] [ page needed ]

Contents

Synthesis and reactions

Thionyl fluoride can be produced by the reaction of thionyl chloride with fluoride sources such as antimony trifluoride. [4] [3] :542

3 SOCl2 + 2 SbF3 → 3 SOF2 + 2 SbCl3

Alternatively, it arises via the fluorination of sulfur dioxide: [3] :542

SO2 + PF5 → SOF2 + POF3

Thionyl fluoride arises as a fleeting intermediate from the decomposition of sulfur hexafluoride as the result of electrical discharges which generate sulfur tetrafluoride. SF4 hydrolyzes to give thionyl fluoride, which in turn hydrolyzes further as described below. [5]

As expected from the behavior of the other thionyl halides, this compound hydrolyzes readily, giving hydrogen fluoride and sulfur dioxide: [3] :542

SOF2 + H2O → 2 HF + SO2

In contrast to thionyl chloride and bromide, thionyl fluoride is not useful for halogenation. The related derivative, sulfur tetrafluoride is however useful for that purpose.[ citation needed ]

Related Research Articles

Sulfur trioxide (alternative spelling sulphur trioxide) is the chemical compound with the formula SO3. It has been described as "unquestionably the most [economically] important sulfur oxide". It is prepared on an industrial scale as a precursor to sulfuric acid.

<span class="mw-page-title-main">Sulfuryl fluoride</span> Chemical compound

Sulfuryl fluoride (also spelled sulphuryl fluoride) is an inorganic compound with the formula SO2F2. It is an easily condensed gas and has properties more similar to sulfur hexafluoride than sulfuryl chloride, being resistant to hydrolysis even up to 150 °C. It is neurotoxic and a potent greenhouse gas, but is widely used as a fumigant insecticide to control termites.

<span class="mw-page-title-main">Thionyl chloride</span> Inorganic compound (SOCl2)

Thionyl chloride is an inorganic compound with the chemical formula SOCl2. It is a moderately volatile, colourless liquid with an unpleasant acrid odour. Thionyl chloride is primarily used as a chlorinating reagent, with approximately 45,000 tonnes per year being produced during the early 1990s, but is occasionally also used as a solvent. It is toxic, reacts with water, and is also listed under the Chemical Weapons Convention as it may be used for the production of chemical weapons.

<span class="mw-page-title-main">Xenon tetrafluoride</span> Chemical compound

Xenon tetrafluoride is a chemical compound with chemical formula XeF
4
. It was the first discovered binary compound of a noble gas. It is produced by the chemical reaction of xenon with fluorine:

<span class="mw-page-title-main">Sulfuryl chloride</span> Chemical compound

Sulfuryl chloride is an inorganic compound with the formula SO2Cl2. At room temperature, it is a colorless liquid with a pungent odor. Sulfuryl chloride is not found in nature, as can be inferred from its rapid hydrolysis.

<span class="mw-page-title-main">Tellurium tetrafluoride</span> Chemical compound

Tellurium tetrafluoride, TeF4, is a stable, white, hygroscopic crystalline solid and is one of two fluorides of tellurium. The other binary fluoride is tellurium hexafluoride. The widely reported Te2F10 has been shown to be F5TeOTeF5 There are other tellurium compounds that contain fluorine, but only the two mentioned contain solely tellurium and fluorine. Tellurium difluoride, TeF2, and ditellurium difluoride, Te2F2 are not known.

<span class="mw-page-title-main">Chlorosulfuric acid</span> Chemical compound

Chlorosulfuric acid (IUPAC name: sulfurochloridic acid) is the inorganic compound with the formula HSO3Cl. It is also known as chlorosulfonic acid, being the sulfonic acid of chlorine. It is a distillable, colorless liquid which is hygroscopic and a powerful lachrymator. Commercial samples usually are pale brown or straw colored.

<span class="mw-page-title-main">Sulfur tetrafluoride</span> Chemical compound

Sulfur tetrafluoride is a chemical compound with the formula SF4. It is a colorless corrosive gas that releases dangerous hydrogen fluoride gas upon exposure to water or moisture. Sulfur tetrafluoride is a useful reagent for the preparation of organofluorine compounds, some of which are important in the pharmaceutical and specialty chemical industries.

<span class="mw-page-title-main">Arsenic trichloride</span> Chemical compound

Arsenic trichloride is an inorganic compound with the formula AsCl3, also known as arsenous chloride or butter of arsenic. This poisonous oil is colourless, although impure samples may appear yellow. It is an intermediate in the manufacture of organoarsenic compounds.

<span class="mw-page-title-main">Selenium tetrafluoride</span> Chemical compound

Selenium tetrafluoride (SeF4) is an inorganic compound. It is a colourless liquid that reacts readily with water. It can be used as a fluorinating reagent in organic syntheses (fluorination of alcohols, carboxylic acids or carbonyl compounds) and has advantages over sulfur tetrafluoride in that milder conditions can be employed and it is a liquid rather than a gas.

In inorganic chemistry, sulfonyl halide groups occur when a sulfonyl functional group is singly bonded to a halogen atom. They have the general formula RSO2X, where X is a halogen. The stability of sulfonyl halides decreases in the order fluorides > chlorides > bromides > iodides, all four types being well known. The sulfonyl chlorides and fluorides are of dominant importance in this series.

<span class="mw-page-title-main">Krypton difluoride</span> Chemical compound

Krypton difluoride, KrF2 is a chemical compound of krypton and fluorine. It was the first compound of krypton discovered. It is a volatile, colourless solid at room temperature. The structure of the KrF2 molecule is linear, with Kr−F distances of 188.9 pm. It reacts with strong Lewis acids to form salts of the KrF+ and Kr
2
F+
3
cations.

<span class="mw-page-title-main">Rhenium heptafluoride</span> Chemical compound

Rhenium heptafluoride is the compound with the formula ReF7. It is a yellow low melting solid and is the only thermally stable metal heptafluoride. It has a distorted pentagonal bipyramidal structure similar to IF7, which was confirmed by neutron diffraction at 1.5 K. The structure is non-rigid, as evidenced by electron diffraction studies.

Selenium hexafluoride is the inorganic compound with the formula SeF6. It is a very toxic colourless gas described as having a "repulsive" odor. It is not widely encountered and has no commercial applications.

A hexafluoride is a chemical compound with the general formula QXnF6, QXnF6m−, or QXnF6m+. Many molecules fit this formula. An important hexafluoride is hexafluorosilicic acid (H2SiF6), which is a byproduct of the mining of phosphate rock. In the nuclear industry, uranium hexafluoride (UF6) is an important intermediate in the purification of this element.

<span class="mw-page-title-main">Thionyl tetrafluoride</span> Chemical compound

Thionyl tetrafluoride, also known as sulfur tetrafluoride oxide, is an inorganic compound with the formula SOF4. It is a colorless gas.

<span class="mw-page-title-main">Sulfur tetrachloride</span> Chemical compound

Sulfur tetrachloride is an inorganic compound with chemical formula SCl4. It has only been obtained as an unstable pale yellow solid. The corresponding SF4 is a stable, useful reagent.

In chemistry, molecular oxohalides (oxyhalides) are a group of chemical compounds in which both oxygen and halogen atoms are attached to another chemical element A in a single molecule. They have the general formula AOmXn, where X is a halogen. Known oxohalides have fluorine (F), chlorine (Cl), bromine (Br), and/or iodine (I) in their molecules. The element A may be a main group element, a transition element, a rare earth element or an actinide. The term oxohalide, or oxyhalide, may also refer to minerals and other crystalline substances with the same overall chemical formula, but having an ionic structure.

<span class="mw-page-title-main">Polonium hexafluoride</span> Chemical compound

Polonium hexafluoride is a possible chemical compound of polonium and fluorine and one of the seventeen known binary hexafluorides.

Fluorine forms a great variety of chemical compounds, within which it always adopts an oxidation state of −1. With other atoms, fluorine forms either polar covalent bonds or ionic bonds. Most frequently, covalent bonds involving fluorine atoms are single bonds, although at least two examples of a higher order bond exist. Fluoride may act as a bridging ligand between two metals in some complex molecules. Molecules containing fluorine may also exhibit hydrogen bonding. Fluorine's chemistry includes inorganic compounds formed with hydrogen, metals, nonmetals, and even noble gases; as well as a diverse set of organic compounds. For many elements the highest known oxidation state can be achieved in a fluoride. For some elements this is achieved exclusively in a fluoride, for others exclusively in an oxide; and for still others the highest oxidation states of oxides and fluorides are always equal.

References

  1. Thionyl fluoride in Linstrom, Peter J.; Mallard, William G. (eds.); NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg (MD) (retrieved 2014-05-11)
  2. "Thionyl Fluoride". chemister.ru database.
  3. 1 2 3 4 Holleman, A.F. (2001). Holleman, A.F.; Wiberg, Egon; Wiberg, Nils (eds.). Inorganic Chemistry (1st ed.). San Diego, CA: Academic Press. ISBN   0-12-352651-5.
  4. Smith, W. C.; Muetterties, E. L.; Park, J. D.; Settine, Robert (January 1960). "Thionyl Fluoride". Inorganic Syntheses. Vol. 6. pp. 162–163. doi:10.1002/9780470132371.ch50. ISBN   978-0-470-13165-7.
  5. Pepi, Federico; Andreina Ricci; Marco Di Stefano; Marzio Rosi; Giuseppe D'Arcangelo (September 18, 2002). "Thionyl Fluoride from Sulfur Hexafluoride Corona Discharge Decomposition: Gas-Phase Chemistry of (SOF2)H+ Ions". Journal of Physical Chemistry A. 106 (40): 9261–9266. Bibcode:2002JPCA..106.9261P. doi:10.1021/jp021074v.