Dimethyl trisulfide

Last updated
Dimethyl trisulfide
Dimethyl trisulfide.svg
Dimethyl-trisulfide-DFT-Mercury-3D-balls.png
Names
Preferred IUPAC name
Dimethyltrisulfane [1]
Other names
2,3,4-trithiapentane
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.020.828 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 222-910-9
KEGG
PubChem CID
UNII
  • InChI=1S/C2H6S3/c1-3-5-4-2/h1-2H3 Yes check.svgY
    Key: YWHLKYXPLRWGSE-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C2H6S3/c1-3-5-4-2/h1-2H3
    Key: YWHLKYXPLRWGSE-UHFFFAOYAF
  • S(SSC)C
Properties
C2H6S3
Molar mass 126.26 g/mol
Density 1.1978 g/cm3
Melting point −68.05 °C (−90.49 °F; 205.10 K)
Boiling point 170 °C (338 °F; 443 K) (65–68 °C @ 25 Torr)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Dimethyl trisulfide (DMTS) is an organic chemical compound and the simplest organic trisulfide, with the chemical formula CH3SSSCH3. [2] [3] It is a flammable liquid with a foul odor, which is detectable at levels as low as 1 part per trillion. [4]

Contents

Occurrence

Dimethyl trisulfide has been found in volatiles emitted from cooked onion, leek and other Allium species, from broccoli and cabbage, as well as from Limburger cheese, [5] and is involved in the unpalatable aroma of aged beer and stale Japanese sake. [6] It is a product of bacterial decomposition, including the early stages of human decomposition, [7] and is a major attractant for blowflies looking for hosts. Dimethyl trisulfide along with dimethyl sulfide and dimethyl disulfide have been confirmed as volatile compounds given off by the fly-attracting plant known as dead-horse arum ( Helicodiceros muscivorus ). These flies are attracted to the odor of fetid meat and help pollinate this plant. [8] DMTS contributes to the foul odor given off by the fungus Phallus impudicus , also known as the common stinkhorn. DMTS causes the characteristic malodorous smell of a fungating lesion, e.g., from cancer wounds, [4] and contributes to the odor of human feces. [9]

DMTS can be synthesized by the reaction of methanethiol with hydrogen sulfide (in the presence of copper (II)) [10] and with sulfur dichloride, [11] among other methods: [3]

2 CH3SH + SCl2 → CH3SSSCH3 + 2 HCl

Chemical reactions

On heating at 80 °C, DMTS slowly decomposes to a mixture of dimethyl di-, tri-, and tetrasulfides. [11] The reactivity of DMTS is related to its weak sulfur-sulfur bond (ca. 45 kcal/mol). [2] Dimethyl tetrasulfide, which is thermally more reactive than dimethyl trisulfide, has a still weaker (central) sulfur-sulfur bond (ca. 36 kcal/mol). [11] Oxidation of DMTS by meta-chloroperoxybenzoic acid (mCPBA) gives the corresponding S-monoxide, CH3S(O)SSCH3. [12]

Uses

Trap baits containing dimethyl trisulfide have been used to capture Calliphora loewi and other blowflies. [13] Dimethyl trisulfide has been found to be an effective cyanide antidote in a rodent model for cyanide poisoning both against subcutaneous potassium cyanide and inhaled hydrogen cyanide, converting cyanide to much less toxic thiocyanate. It is suggested that dimethyl trisulfide can be used in a mass casualty cyanide exposure setting. In conjunction with these studies, the LD50 of dimethyl trisulfide in CD-1 mice was found to be 598.5 mg/kg, which may be compared to the LD50 of potassium cyanide of 8.0 mg/kg. [14]

Related Research Articles

<span class="mw-page-title-main">Thiol</span> Any organic compound having a sulfanyl group (–SH)

In organic chemistry, a thiol, or thiol derivative, is any organosulfur compound of the form R−SH, where R represents an alkyl or other organic substituent. The −SH functional group itself is referred to as either a thiol group or a sulfhydryl group, or a sulfanyl group. Thiols are the sulfur analogue of alcohols, and the word is a blend of "thio-" with "alcohol".

<span class="mw-page-title-main">Hydrogen sulfide</span> Poisonous, corrosive and flammable gas

Hydrogen sulfide is a chemical compound with the formula H2S. It is a colorless chalcogen-hydride gas, and is poisonous, corrosive, and flammable, with trace amounts in ambient atmosphere having a characteristic foul odor of rotten eggs. Swedish chemist Carl Wilhelm Scheele is credited with having discovered the chemical composition of purified hydrogen sulfide in 1777.

In organic chemistry, the Swern oxidation, named after Daniel Swern, is a chemical reaction whereby a primary or secondary alcohol is oxidized to an aldehyde or ketone using oxalyl chloride, dimethyl sulfoxide (DMSO) and an organic base, such as triethylamine. It is one of the many oxidation reactions commonly referred to as 'activated DMSO' oxidations. The reaction is known for its mild character and wide tolerance of functional groups.

<span class="mw-page-title-main">Organic sulfide</span> Organic compound with an –S– group

In organic chemistry, a sulfide or thioether is an organosulfur functional group with the connectivity R−S−R' as shown on right. Like many other sulfur-containing compounds, volatile sulfides have foul odors. A sulfide is similar to an ether except that it contains a sulfur atom in place of the oxygen. The grouping of oxygen and sulfur in the periodic table suggests that the chemical properties of ethers and sulfides are somewhat similar, though the extent to which this is true in practice varies depending on the application.

Thiophene is a heterocyclic compound with the formula C4H4S. Consisting of a planar five-membered ring, it is aromatic as indicated by its extensive substitution reactions. It is a colorless liquid with a benzene-like odor. In most of its reactions, it resembles benzene. Compounds analogous to thiophene include furan (C4H4O), selenophene (C4H4Se) and pyrrole (C4H4NH), which each vary by the heteroatom in the ring.

<span class="mw-page-title-main">Formamide</span> Chemical compound

Formamide is an amide derived from formic acid. It is a colorless liquid which is miscible with water and has an ammonia-like odor. It is chemical feedstock for the manufacture of sulfa drugs and other pharmaceuticals, herbicides and pesticides, and in the manufacture of hydrocyanic acid. It has been used as a softener for paper and fiber. It is a solvent for many ionic compounds. It has also been used as a solvent for resins and plasticizers. Some astrobiologists suggest that it may be an alternative to water as the main solvent in other forms of life.

An isocyanide is an organic compound with the functional group –N+≡C. It is the isomer of the related nitrile (–C≡N), hence the prefix is isocyano. The organic fragment is connected to the isocyanide group through the nitrogen atom, not via the carbon. They are used as building blocks for the synthesis of other compounds.

Organosulfur chemistry is the study of the properties and synthesis of organosulfur compounds, which are organic compounds that contain sulfur. They are often associated with foul odors, but many of the sweetest compounds known are organosulfur derivatives, e.g., saccharin. Nature is abound with organosulfur compounds—sulfur is vital for life. Of the 20 common amino acids, two are organosulfur compounds, and the antibiotics penicillin and sulfa drugs both contain sulfur. While sulfur-containing antibiotics save many lives, sulfur mustard is a deadly chemical warfare agent. Fossil fuels, coal, petroleum, and natural gas, which are derived from ancient organisms, necessarily contain organosulfur compounds, the removal of which is a major focus of oil refineries.

<span class="mw-page-title-main">Sulfoxide</span> Organic compound containing a sulfinyl group (>SO)

In organic chemistry, a sulfoxide, also called a sulphoxide, is an organosulfur compound containing a sulfinyl functional group attached to two carbon atoms. It is a polar functional group. Sulfoxides are oxidized derivatives of sulfides. Examples of important sulfoxides are alliin, a precursor to the compound that gives freshly crushed garlic its aroma, and dimethyl sulfoxide (DMSO), a common solvent.

<span class="mw-page-title-main">Dimethyl sulfide</span> Chemical compound

Dimethyl sulfide (DMS) or methylthiomethane is an organosulfur compound with the formula (CH3)2S. It is the simplest thioether and has a characteristic disagreeable odor. It is a flammable liquid that boils at 37 °C (99 °F). It is a component of the smell produced from cooking of certain vegetables, notably maize, cabbage, beetroot, and seafoods. It is also an indication of bacterial contamination in malt production and brewing. It is a breakdown product of dimethylsulfoniopropionate (DMSP), and is also produced by the bacterial metabolism of methanethiol.

Sulfur compounds are chemical compounds formed the element sulfur (S). Common oxidation states of sulfur range from −2 to +6. Sulfur forms stable compounds with all elements except the noble gases.

<span class="mw-page-title-main">Diallyl disulfide</span> Chemical compound

Diallyl disulfide is an organosulfur compound derived from garlic and a few other genus Allium plants. Along with diallyl trisulfide and diallyl tetrasulfide, it is one of the principal components of the distilled oil of garlic. It is a yellowish liquid which is insoluble in water and has a strong garlic odour. It is produced during the decomposition of allicin, which is released upon crushing garlic and other plants of the family Alliaceae. Diallyl disulfide has many of the health benefits of garlic, but it is also an allergen causing garlic allergy. Highly diluted, it is used as a flavoring in food. It decomposes in the human body into other compounds such as allyl methyl sulfide.

<span class="mw-page-title-main">Trioxidane</span> Chemical compound

Trioxidane, also called hydrogen trioxide is an inorganic compound with the chemical formula H[O]
3
H
. It is one of the unstable hydrogen polyoxides. In aqueous solutions, trioxidane decomposes to form water and singlet oxygen:

<span class="mw-page-title-main">Cyclopropanation</span> Chemical process which generates cyclopropane rings

In organic chemistry, cyclopropanation refers to any chemical process which generates cyclopropane rings. It is an important process in modern chemistry as many useful compounds bear this motif; for example pyrethroid insecticides and a number of quinolone antibiotics. However, the high ring strain present in cyclopropanes makes them challenging to produce and generally requires the use of highly reactive species, such as carbenes, ylids and carbanions. Many of the reactions proceed in a cheletropic manner.

A polysulfane is a chemical compound of formula H2Sn, where n > 1. Compounds containing 2 – 8 sulfur atoms have been isolated, longer chain compounds have been detected, but only in solution. H2S2 is colourless, higher members are yellow with the colour increasing with the sulfur content. In the chemical literature the term polysulfanes is sometimes used for compounds containing −(S)n, e.g. organic polysulfanes R1−(S)n−R2.

<span class="mw-page-title-main">Thiosulfinate</span> Functional group

In organosulfur chemistry, thiosulfinate is a functional group consisting of the linkage R-S(O)-S-R. Thiolsulfinates are also named as alkanethiosulfinic acid esters.

Dimethyl disulfide (DMDS) is an organic chemical compound with the molecular formula CH3SSCH3. It is a flammable liquid with an unpleasant, garlic-like odor. The compound is colorless although impure samples often appear yellowish.

<span class="mw-page-title-main">Trisulfane</span> Chemical compound

Trisulfane is the inorganic compound with the formula H2S3. It is a pale yellow volatile liquid with a camphor-like odor. It decomposes readily to hydrogen sulfide and elemental sulfur. It is produced by distillation of the polysulfane oil obtained by acidification of polysulfide salts.

<span class="mw-page-title-main">Thiosulfurous acid</span> Chemical compound

Thiosulfurous acid is a hypothetical chemical compound with the formula HS−S(=O)−OH or HO−S(=S)−OH. Attempted synthesis leads to polymers. It is a low oxidation state (+1) sulfur acid. It is the Arrhenius acid for disulfur monoxide. Salts derived from thiosulfurous acid, which are also unknown, are named "thiosulfites", "thionosulfites" or "sulfurothioites". The ion is S=SO2−
2
.

Hydrogen chalcogenides are binary compounds of hydrogen with chalcogen atoms. Water, the first chemical compound in this series, contains one oxygen atom and two hydrogen atoms, and is the most common compound on the Earth's surface.

References

  1. IUPAC Chemical Nomenclature and Structure Representation Division (2013). "P-68.4.1.1". In Favre, Henri A.; Powell, Warren H. (eds.). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. IUPACRSC. ISBN   978-0-85404-182-4.
  2. 1 2 Edward L. Clennan; Kristina L. Stensaas (1998). "Recent progress in the synthesis, properties and reactions of trisulfanes and their oxides". Organic Preparations and Procedures International. 30 (5): 551–600. doi:10.1080/00304949809355321.
  3. 1 2 Ralf Steudel (2002). "The Chemistry of Organic Polysulfanes R−Sn−R (n > 2)". Chemical Reviews. 102 (11): 3905–3945. doi:10.1021/cr010127m. PMID   12428982.
  4. 1 2 Shirasu, Mika; Nagai, Shunji; Hayashi, Ryuichi; Ochiai, Atsushi; Touhara, Kazushige (2009). "Dimethyl trisulfide as a characteristic odor associated with fungating cancer wounds". Bioscience, Biotechnology, and Biochemistry. 73 (9): 2117–20. doi:10.1271/bbb.90229. PMID   19734656. S2CID   28235413.
  5. Thomas H. Parliament; Michael G. Kolor; Donald J. Rizzo (1982). "Volatile components of Limburger cheese". J. Agric. Food Chem. 30 (6): 1006–1008. doi:10.1021/jf00114a001.
  6. Atsuko Isogai; Ryoko Kanda; Yoshikazu Hiraga; Toshihide Nishimura; Hiroshi Iwata; Nami Goto-Yamamoto (2009). "Screening and Identification of Precursor Compounds of Dimethyl Trisulfide (DMTS) in Japanese Sake". J. Agric. Food Chem. 57 (1): 189–195. doi:10.1021/jf802582p. PMID   19090758.
  7. M. Statheropoulosa; A. Agapioua; C. Spiliopoulou; G.C. Pallis; E. Sianos (2007). "Environmental aspects of VOCs evolved in the early stages of human decomposition". Science of the Total Environment. 385 (1–3): 221–227. Bibcode:2007ScTEn.385..221S. doi:10.1016/j.scitotenv.2007.07.003. PMID   17669473.
  8. Marcus C. Stensmyr; Isabella Urru; Ignazio Collu; Malin Celander; Bill S. Hansson; Anna-Maria Angioy (2002). "Rotting smell of dead-horse arum florets". Nature. 420 (6916): 625–626. Bibcode:2002Natur.420..625S. doi:10.1038/420625a. PMID   12478279. S2CID   1001475.
  9. J.G. Moore; L.D. Jessop; D.N. Osborne, DN. (1987). "Gas-chromatographic and mass-spectrometric analysis of the odor of human feces". Gastroenterology. 93 (6): 1321–1329. doi:10.1016/0016-5085(87)90262-9. PMID   3678751.
  10. Mustapha Nedjma; Norbert Hoffmann (1996). "Hydrogen Sulfide Reactivity with Thiols in the Presence of Copper(II) in Hydroalcoholic Solutions or Cognac Brandies: Formation of Symmetrical and Unsymmetrical Dialkyl Trisulfides". J. Agric. Food Chem. 44 (12): 3935–3938. doi:10.1021/jf9602582.
  11. 1 2 3 Timothy L. Pickering; K. J. Saunders; Arthur V. Tobolsky (1967). "Disproportionation of organic polysulfides". J. Am. Chem. Soc. 89 (10): 2364–2367. doi:10.1021/ja00986a021.
  12. J. Auger; Y. Koussourakos; E. Thibout (1985). "Monooxidation of organic trisulfides". Chimika Chronika. 14 (4): 263–264.
  13. Nilssen Arne C.; Åge Tǿmmerås Bjǿrn; Schmid Rudolf; Barli Evensen Sissel (1996). "Dimethyl trisulphide is a strong attractant for some calliphorids and a muscid but not for the reindeer oestrids Hypoderma tarandi and Cephenemyia trompe". Entomologia Experimentalis et Applicata. 79 (2): 211–218. Bibcode:1996EEApp..79..211N. doi: 10.1111/j.1570-7458.1996.tb00828.x . S2CID   86404109.
  14. DeLeon, SM; et al. (2018). "DMTS is an effective treatment in both inhalation and injection models for cyanide poisoning using unanesthetized mice". Clinical Toxicology . 56 (25): 332–341. doi:10.1080/15563650.2017.1376749. PMC   6322672 . PMID   28922956.