Thionyl bromide

Last updated
Thionyl bromide
Structure of the thionyl bromide molecule Thionyl-bromide.png
Structure of the thionyl bromide molecule
3D model of a thionyl bromide molecule Thionyl-bromide-from-xtal-3D-vdW-B.png
3D model of a thionyl bromide molecule
Thionyl-bromide-xtal-3D-vdW.png
Names
IUPAC name
Thionyl bromide
Other names
Sulfur oxy dibromide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.007.332 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 208-064-3
PubChem CID
UNII
  • InChI=1S/Br2OS/c1-4(2)3 Yes check.svgY
    Key: HFRXJVQOXRXOPP-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/Br2OS/c1-4(2)3
    Key: HFRXJVQOXRXOPP-UHFFFAOYAY
  • BrS(Br)=O
Properties
SOBr2
Molar mass 207.87 g/mol
Appearancecolorless liquid
Density 2.688 g/mL, liquid
Melting point −52 °C (−62 °F; 221 K)
Boiling point 68 °C (154 °F; 341 K) at 40 mmHg
decomposes
Solubility reacts in HBr, acetone, and alcohol
soluble in benzene, toluene, ether
Structure
trigonal pyramidal
Hazards [1]
Occupational safety and health (OHS/OSH):
Main hazards
Readily decomposes in air to toxic gases
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-exclam.svg
Danger
H312, H314, H332
P280, P305+P351+P338, P310
Flash point Non-flammable
Safety data sheet (SDS) "External MSDS"
Related compounds
Related compounds
SOCl2, SeOCl2;

PBr3, Br2

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Thionyl bromide is the chemical compound SOBr2. It is less stable and less widely used than its chloride analogue, thionyl chloride. It is prepared by the action of hydrogen bromide on thionyl chloride, [2] a characteristic reaction where a stronger acid is converted to a weaker acid:[ citation needed ]

SOCl2 + 2 HBr → SOBr2 + 2 HCl

Thionyl bromide will convert alcohols to alkyl bromides and can be used for brominations of certain α,β-unsaturated carbonyl compounds. [3] It may occasionally be used as a solvent. [4] [5]

Safety

SOBr2 hydrolyzes readily in air to release dangerous fumes of sulfur dioxide and hydrogen bromide.

SOBr2 + H2O → SO2 + 2 HBr

Related Research Articles

<span class="mw-page-title-main">Bromine</span> Chemical element, symbol Br and atomic number 35

Bromine is a chemical element; it has symbol Br and atomic number 35. It is a volatile red-brown liquid at room temperature that evaporates readily to form a similarly coloured vapour. Its properties are intermediate between those of chlorine and iodine. Isolated independently by two chemists, Carl Jacob Löwig and Antoine Jérôme Balard, its name was derived from the Ancient Greek βρῶμος (bromos) meaning "stench", referring to its sharp and pungent smell.

<span class="mw-page-title-main">Haloalkane</span> Group of chemical compounds derived from alkanes containing one or more halogens

The haloalkanes are alkanes containing one or more halogen substituents. They are a subset of the general class of halocarbons, although the distinction is not often made. Haloalkanes are widely used commercially. They are used as flame retardants, fire extinguishants, refrigerants, propellants, solvents, and pharmaceuticals. Subsequent to the widespread use in commerce, many halocarbons have also been shown to be serious pollutants and toxins. For example, the chlorofluorocarbons have been shown to lead to ozone depletion. Methyl bromide is a controversial fumigant. Only haloalkanes that contain chlorine, bromine, and iodine are a threat to the ozone layer, but fluorinated volatile haloalkanes in theory may have activity as greenhouse gases. Methyl iodide, a naturally occurring substance, however, does not have ozone-depleting properties and the United States Environmental Protection Agency has designated the compound a non-ozone layer depleter. For more information, see Halomethane. Haloalkane or alkyl halides are the compounds which have the general formula "RX" where R is an alkyl or substituted alkyl group and X is a halogen.

In organic chemistry, an acyl chloride is an organic compound with the functional group −C(=O)Cl. Their formula is usually written R−COCl, where R is a side chain. They are reactive derivatives of carboxylic acids. A specific example of an acyl chloride is acetyl chloride, CH3COCl. Acyl chlorides are the most important subset of acyl halides.

Hydrobromic acid is an aqueous solution of hydrogen bromide. It is a strong acid formed by dissolving the diatomic molecule hydrogen bromide (HBr) in water. "Constant boiling" hydrobromic acid is an aqueous solution that distills at 124.3 °C (255.7 °F) and contains 47.6% HBr by mass, which is 8.77 mol/L. Hydrobromic acid is one of the strongest mineral acids known.

In chemistry, halogenation is a chemical reaction that entails the introduction of one or more halogens into a compound. Halide-containing compounds are pervasive, making this type of transformation important, e.g. in the production of polymers, drugs. This kind of conversion is in fact so common that a comprehensive overview is challenging. This article mainly deals with halogenation using elemental halogens. Halides are also commonly introduced using salts of the halides and halogen acids. Many specialized reagents exist for and introducing halogens into diverse substrates, e.g. thionyl chloride.

<span class="mw-page-title-main">Acyl halide</span> Oxoacid compound with an –OH group replaced by a halogen

In organic chemistry, an acyl halide is a chemical compound derived from an oxoacid by replacing a hydroxyl group with a halide group.

<span class="mw-page-title-main">Hydrogen bromide</span> Chemical compound

Hydrogen bromide is the inorganic compound with the formula HBr. It is a hydrogen halide consisting of hydrogen and bromine. A colorless gas, it dissolves in water, forming hydrobromic acid, which is saturated at 68.85% HBr by weight at room temperature. Aqueous solutions that are 47.6% HBr by mass form a constant-boiling azeotrope mixture that boils at 124.3 °C (255.7 °F). Boiling less concentrated solutions releases H2O until the constant-boiling mixture composition is reached.

<span class="mw-page-title-main">Acetyl chloride</span> Organic compound (CH₃COCl)

Acetyl chloride is an acyl chloride derived from acetic acid. It belongs to the class of organic compounds called acid halides. It is a colorless, corrosive, volatile liquid. Its formula is commonly abbreviated to AcCl.

<span class="mw-page-title-main">Oxalyl chloride</span> Chemical compound

Oxalyl chloride is an organic chemical compound with the formula Cl−C(=O)−C(=O)−Cl. This colorless, sharp-smelling liquid, the diacyl chloride of oxalic acid, is a useful reagent in organic synthesis.

<span class="mw-page-title-main">Thionyl chloride</span> Inorganic compound (SOCl2)

Thionyl chloride is an inorganic compound with the chemical formula SOCl2. It is a moderately volatile, colourless liquid with an unpleasant acrid odour. Thionyl chloride is primarily used as a chlorinating reagent, with approximately 45,000 tonnes per year being produced during the early 1990s, but is occasionally also used as a solvent. It is toxic, reacts with water, and is also listed under the Chemical Weapons Convention as it may be used for the production of chemical weapons.

<span class="mw-page-title-main">Hydrohalogenation</span> Electrophilic addition of hydrogen halides to alkenes

A hydrohalogenation reaction is the electrophilic addition of hydrogen halides like hydrogen chloride or hydrogen bromide to alkenes to yield the corresponding haloalkanes.

<span class="mw-page-title-main">Triphenylphosphine</span> Chemical compound

Triphenylphosphine (IUPAC name: triphenylphosphane) is a common organophosphorus compound with the formula P(C6H5)3 and often abbreviated to PPh3 or Ph3P. It is versatile compound that is widely used as a reagent in organic synthesis and as a ligand for transition metal complexes, including ones that serve as catalysts in organometallic chemistry. PPh3 exists as relatively air stable, colorless crystals at room temperature. It dissolves in non-polar organic solvents such as benzene and diethyl ether.

<span class="mw-page-title-main">Hydrogen iodide</span> Chemical compound

Hydrogen iodide (HI) is a diatomic molecule and hydrogen halide. Aqueous solutions of HI are known as hydroiodic acid or hydriodic acid, a strong acid. Hydrogen iodide and hydroiodic acid are, however, different in that the former is a gas under standard conditions, whereas the other is an aqueous solution of the gas. They are interconvertible. HI is used in organic and inorganic synthesis as one of the primary sources of iodine and as a reducing agent.

<span class="mw-page-title-main">Thionyl fluoride</span> Chemical compound

Thionyl fluoride is the inorganic compound with the formula SOF
2
. This colourless gas is mainly of theoretical interest, but it is a product of the degradation of sulfur hexafluoride, an insulator in electrical equipment. The molecule adopts a distorted pyramidal structure, with Cs symmetry. The S-O and S-F distances are 1.42 and 1.58 Å, respectively. The O-S-F and F-S-F angles are 106.2 and 92.2°, respectively. Thionyl chloride and thionyl bromide have similar structures, although these compounds are liquid at room temperature. Mixed halides are also known, such as SOClF, thionyl chloride fluoride.

<span class="mw-page-title-main">Sulfuryl chloride</span> Chemical compound

Sulfuryl chloride is an inorganic compound with the formula SO2Cl2. At room temperature, it is a colorless liquid with a pungent odor. Sulfuryl chloride is not found in nature, as can be inferred from its rapid hydrolysis.

<span class="mw-page-title-main">Zinc bromide</span> Chemical compound

Zinc bromide (ZnBr2) is an inorganic compound with the chemical formula ZnBr2. It is a colourless salt that shares many properties with zinc chloride (ZnCl2), namely a high solubility in water forming acidic solutions, and good solubility in organic solvents. It is hygroscopic and forms a dihydrate ZnBr2·2H2O.

<span class="mw-page-title-main">Molybdenum(V) chloride</span> Chemical compound

Molybdenum(V) chloride is the inorganic compound with the empirical formula MoCl5. This dark volatile solid is used in research to prepare other molybdenum compounds. It is moisture-sensitive and soluble in chlorinated solvents.

<span class="mw-page-title-main">Arsenic trichloride</span> Chemical compound

Arsenic trichloride is an inorganic compound with the formula AsCl3, also known as arsenous chloride or butter of arsenic. This poisonous oil is colourless, although impure samples may appear yellow. It is an intermediate in the manufacture of organoarsenic compounds.

Bromine compounds are compounds containing the element bromine (Br). These compounds usually form the -1, +1, +3 and +5 oxidation states. Bromine is intermediate in reactivity between chlorine and iodine, and is one of the most reactive elements. Bond energies to bromine tend to be lower than those to chlorine but higher than those to iodine, and bromine is a weaker oxidising agent than chlorine but a stronger one than iodine. This can be seen from the standard electrode potentials of the X2/X couples (F, +2.866 V; Cl, +1.395 V; Br, +1.087 V; I, +0.615 V; At, approximately +0.3 V). Bromination often leads to higher oxidation states than iodination but lower or equal oxidation states to chlorination. Bromine tends to react with compounds including M–M, M–H, or M–C bonds to form M–Br bonds.

Organobromine chemistry is the study of the synthesis and properties of organobromine compounds, also called organobromides, which are organic compounds that contain carbon bonded to bromine. The most pervasive is the naturally produced bromomethane.

References

  1. "Thionyl bromide". Sigma Aldrich.
  2. Booth, Harold Simmons (1939). Inorganic syntheses. Volume 1. New York. p. 113. ISBN   978-0-470-13264-7. OCLC   86223179.{{cite book}}: CS1 maint: location missing publisher (link)
  3. Saraf, S. D. (1 August 1969). "Reaction of thionyl bromide with tropolone and phenol". Canadian Journal of Chemistry. 47 (15): 2803–2804. doi: 10.1139/v69-465 .
  4. Furlani, C.; Zinato, E. (May 1967). "Hexahalogenoniobates(V), Oxopentahalogenoniobates(V) and their electronic spectra". Zeitschrift für anorganische und allgemeine Chemie. 351 (3–4): 210–218. doi:10.1002/zaac.19673510311.
  5. The chemistry of the actinide and transactinide elements. Volumes 1-6 (4th ed.). Dordrecht: Springer. 2010. p. 526. ISBN   978-94-007-0211-0.

Mundy, B. P. (2004). "Thionyl Bromide". In Paquette, E. (ed.). Encyclopedia of Reagents for Organic Synthesis. New York: J. Wiley & Sons. doi:10.1002/047084289X.rt098. ISBN   0471936235.