Thallium(I) sulfide

Last updated
Thallium(I) sulfide
Thallium(I)-sulfid.png
Unit cell of thallium sulfide.
Names
IUPAC name
Thallium(I) sulfide
Other names
thallous sulfide, thallous sulphide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.013.865 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 215-250-8
PubChem CID
UNII
Properties
Tl2S
Molar mass 440.833 g/mol
Appearanceblack crystalline solid
Density 8.390 g/cm3
Melting point 448 °C (838 °F; 721 K)
Boiling point 1,367 °C (2,493 °F; 1,640 K)
88.8·10−6 cm3/mol
Structure
Trigonal, hR81
R3, No. 146
a = 12.150(2) Å, c = 18.190(4) Å [1]
2325.57 Å3
27
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)
Infobox references

Thallium(I) sulfide, Tl2S, is a chemical compound of thallium and sulfur. It was used in some of the earliest photo-electric detectors by Theodore Case who developed the so-called thalofide (sometimes spelt thallofide) cell, used in early film projectors. Case described the detector material as consisting of thallium, oxygen and sulfur, [2] and this was incorrectly described by others as being thallium oxysulfide, which incidentally is a compound that is not known. Case's work was then built on by R.J. Cashman who recognised that the controlled oxidation of the Tl2S film was key to the operation of the cell. [3] Cashman's work culminated in the development of long wave infrared detectors used during the Second World War. [4] Reliable Tl2S detectors were also developed in Germany at the same time. [3]
Tl2S is found in nature as the mineral carlinite [5] which has the distinction of being the only sulfide mineral of thallium that does not contain at least two metals. Tl2S has a distorted anti-CdI2 structure. [6]
Tl2S can be prepared from the elements or by precipitating the sulfide from a solution of thallium(I), e.g. the sulfate or nitrate. Thin films have been deposited, produced from a mixture of citratothallium complex and thiourea. Heating the film in nitrogen at 300°C converts all the product into Tl2S [7]

Related Research Articles

Thallium Chemical element with atomic number 81

Thallium is a chemical element with the symbol Tl and atomic number 81. It is a gray post-transition metal that is not found free in nature. When isolated, thallium resembles tin, but discolors when exposed to air. Chemists William Crookes and Claude-Auguste Lamy discovered thallium independently in 1861, in residues of sulfuric acid production. Both used the newly developed method of flame spectroscopy, in which thallium produces a notable green spectral line. Thallium, from Greek θαλλός, thallós, meaning "green shoot" or "twig", was named by Crookes. It was isolated by both Lamy and Crookes in 1862; Lamy by electrolysis, and Crookes by precipitation and melting of the resultant powder. Crookes exhibited it as a powder precipitated by zinc at the International exhibition, which opened on 1 May that year.

The inert-pair effect is the tendency of the two electrons in the outermost atomic s-orbital to remain unshared in compounds of post-transition metals. The term inert-pair effect is often used in relation to the increasing stability of oxidation states that are two less than the group valency for the heavier elements of groups 13, 14, 15 and 16. The term "inert pair" was first proposed by Nevil Sidgwick in 1927. The name suggests that the outermost s electrons are more tightly bound to the nucleus in these atoms, and therefore more difficult to ionize or share.

Cadmium sulfide

Cadmium sulfide is the inorganic compound with the formula CdS. Cadmium sulfide is a yellow solid. It occurs in nature with two different crystal structures as the rare minerals greenockite and hawleyite, but is more prevalent as an impurity substituent in the similarly structured zinc ores sphalerite and wurtzite, which are the major economic sources of cadmium. As a compound that is easy to isolate and purify, it is the principal source of cadmium for all commercial applications. Its vivid yellow color led to its adoption as a pigment for the yellow paint "cadmium yellow" in the 18th century.

Thallium(I) sulfate

Thallium(I) sulfate (Tl2SO4) or thallous sulfate is the sulfate salt of thallium in the common +1 oxidation state, as indicated by the Roman numeral I. It is often referred to as simply thallium sulfate.

Copper monosulfide

Copper monosulfide is a chemical compound of copper and sulfur. It was initially thought to occur in nature as the dark indigo blue mineral covellite. However, it was later shown to be rather a cuprous compound, formula Cu+3S(S2). CuS is a moderate conductor of electricity. A black colloidal precipitate of CuS is formed when hydrogen sulfide, H2S, is bubbled through solutions of Cu(II) salts. It is one of a number of binary compounds of copper and sulfur (see copper sulfide for an overview of this subject), and has attracted interest because of its potential uses in catalysis and photovoltaics.

Lead selenide (PbSe), or lead(II) selenide, a selenide of lead, is a semiconductor material. It forms cubic crystals of the NaCl structure; it has a direct bandgap of 0.27 eV at room temperature. It is a grey crystalline solid material.

Zinc nitride

Zinc nitride (Zn3N2) is an inorganic compound of zinc and nitrogen, usually obtained as (blue)grey crystals. It is a semiconductor. In pure form, it has the anti-bixbyite structure.

Thallium(I) bromide

Thallium(I) bromide is a chemical compound of thallium and bromine with a chemical formula TlBr. This salt is used in room-temperature detectors of X-rays, gamma-rays and blue light, as well as in near-infrared optics.

Thallium(I) chloride

Thallium(I) chloride, also known as thallous chloride, is a chemical compound with the formula TlCl. This colourless salt is an intermediate in the isolation of thallium from its ores. Typically, an acidic solution of thallium(I) sulfate is treated with hydrochloric acid to precipitate insoluble thallium(I) chloride. This solid crystallizes in the caesium chloride motif.

Thallium(I) iodide

Thallium(I) iodide is a chemical compound with the formula TlI. It is unusual in being one of the few water-insoluble metal iodides, along with AgI, CuI, SnI2, SnI4, PbI2 and HgI2.

Thallium(III) oxide

Thallium(III) oxide, also known as thallic oxide, is a chemical compound of thallium and oxygen. It occurs in nature as the rare mineral avicennite. Its structure is related to that of Mn2O3 which has a bixbyite like structure. Tl2O3 is metallic with high conductivity and is a degenerate n-type semiconductor which may have potential use in solar cells. A method of producing Tl2O3 by MOCVD is known. Any practical use of thallium(III) oxide will always have to take account of thallium's poisonous nature. Contact with moisture and acids may form poisonous thallium compounds.

Aluminium dodecaboride (AlB12) is a superhard chemical compound with 17% aluminium content by weight.

Thallium(I) fluoride (or thallous fluoride or thallium monofluoride) is the chemical compound composed of thallium and fluorine with the formula TlF. It consists of hard white orthorhombic crystals which are slightly deliquescent in humid air but revert to the anhydrous form in dry air. It has a distorted sodium chloride (rock salt) crystal structure, due to the 6s2 inert pair on Tl+.

Allchar deposit

Allchar deposit is a low-temperature hydrothermal gold–arsenic–antimony–thallium deposit in Kavadarci Municipality of North Macedonia. For some time, the thallium-rich part of the deposit was mined. The Crven Dol mine yielded thallium and the ore body still holds estimated amount of 500 t of thallium. The mineral lorandite from this ore deposit is being used to determine the solar neutrino flux.

This page contains crystal structure data used in the article crystal structure of boron-rich metal borides.

Crystal structure of boron-rich metal borides Boron chemical complexes

Metals, and specifically rare-earth elements, form numerous chemical complexes with boron. Their crystal structure and chemical bonding depend strongly on the metal element M and on its atomic ratio to boron. When B/M ratio exceeds 12, boron atoms form B12 icosahedra which are linked into a three-dimensional boron framework, and the metal atoms reside in the voids of this framework. Those icosahedra are basic structural units of most allotropes of boron and boron-rich rare-earth borides. In such borides, metal atoms donate electrons to the boron polyhedra, and thus these compounds are regarded as electron-deficient solids.

Uranium diselenide is a compound of uranium and selenium. It has a β form that has orthorhombic crystal system. The family of crystals it matches is PbCl2. The dimensions of the unit cell are a: 7.455 Å, b: 4.2320 Å, c= 8.964 Å. The compound has the unusual property of ferromagnetism, but only if the temperature is below 14 K.

Lindgrenite

Lindgrenite is an uncommon copper molybdate mineral with formula: Cu3(MoO4)2(OH)2. It occurs as tabular to platey monoclinic green to yellow green crystals.

Langbeinites are a family of crystalline substances based on the structure of langbeinite with general formula M2M'2(SO4)3, where M is a large univalent cation such as potassium, rubidium, caesium, or ammonium), and M' is a small divalent cation for example (magnesium, calcium, manganese, iron, cobalt, nickel, copper, zinc or cadmium). The sulfate group, SO42−, can be substituted by other tetrahedral anions with a double negative charge such as tetrafluoroberyllate BeF42−, selenate (SeO42−), chromate (CrO42−), molybdate (MO42−), or tungstates. Although monofluorophosphates are predicted, they have not been described. By redistributing charges other anions with the same shape such as phosphate also form langbeinite structures. In these the M' atom must have a greater charge to balance the extra three negative charges.

Nickel forms a series of mixed oxide compounds which are commonly called nickelates. A nickelate is an anion containing nickel or a salt containing a nickelate anion, or a double compound containing nickel bound to oxygen and other elements. Nickel can be in different or even mixed oxidation states, ranging from +1, +2, +3 to +4. The anions can contain a single nickel ion, or multiple to form a cluster ion. The solid mixed oxide compounds are often ceramics, but can also be metallic. They have a variety of electrical and magnetic properties. Rare-earth elements form a range of perovskite nickelates, in which the properties vary systematically as the rare-earth element changes. Fine tuning of properties is achievable with mixtures of elements, applying stress or pressure, or varying the physical form.

References

  1. Giester, G.; Lengauer, C.L.; Tillmanns, E.; Zemann, J. (2002). "Tl2S: Re-Determination of Crystal Structure and Stereochemical Discussion". Journal of Solid State Chemistry. 168 (1): 322–330. Bibcode:2002JSSCh.168..322G. doi:10.1006/jssc.2002.9711.
  2. T. W. Case (1920). "Thalofide Cell"—a New Photo-Electric Substance". Phys. Rev. 15 (4): 289. Bibcode:1920PhRv...15..289C. doi:10.1103/PhysRev.15.289.
  3. 1 2 D. J. Lovell (1971). "Cashman thallous sulfide cell". Appl. Opt. 10 (5): 1003–8. Bibcode:1971ApOpt..10.1003L. doi:10.1364/AO.10.001003. PMID   20094592.
  4. American patent 2448517, filed 1944, granted 1948
  5. "Carlinite". webmineral. Retrieved 2009-06-06.
  6. Giester, G.; Lengauer, C. L.; Tillmanns, E.; Zemann, J. (2002). "Tl2S: Re-Determination of Crystal Structure and Stereochemical Discussion". Journal of Solid State Chemistry. 168 (1): 322. Bibcode:2002JSSCh.168..322G. doi:10.1006/jssc.2002.9711.
  7. V. Estrella, M. T. S. Nair and P. K. Nair (2002). "Crystalline structure of chemically deposited thallium sulfide thin films". Thin Solid Films. 414 (2): 281. Bibcode:2002TSF...414..281E. doi:10.1016/S0040-6090(02)00500-X.