Thallium(I) telluride

Last updated
Thallium(I) telluride
Names
Other names
Thallous telluride
Dithallium telluride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.031.730 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 234-916-9
PubChem CID
  • InChI=1S/Te.2Tl/q-2;2*+1 Yes check.svgY
    Key: XMGYGYGVPIYZNU-UHFFFAOYSA-N Yes check.svgY
  • [Tl][Te][Tl]
Properties
Tl2Te
Molar mass 536.367 g/mol
Melting point 415 °C (779 °F; 688 K) [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Thallium(I) telluride (Tl2Te) is a chemical compound of thallium and tellurium. It has a structure related to that of Tl5Te3. [2] This compound is not well characterized. Its existence has only recently been confirmed by differential scanning calorimetry. [1] [3]

Related Research Articles

<span class="mw-page-title-main">Chalcogen</span> Group of chemical elements

The chalcogens are the chemical elements in group 16 of the periodic table. This group is also known as the oxygen family. Group 16 consists of the elements oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and the radioactive elements polonium (Po) and livermorium (Lv). Often, oxygen is treated separately from the other chalcogens, sometimes even excluded from the scope of the term "chalcogen" altogether, due to its very different chemical behavior from sulfur, selenium, tellurium, and polonium. The word "chalcogen" is derived from a combination of the Greek word khalkόs (χαλκός) principally meaning copper, and the Latinized Greek word genēs, meaning born or produced.

<span class="mw-page-title-main">Indium</span> Chemical element, symbol In and atomic number 49

Indium is a chemical element; it has symbol In and atomic number 49. It is a silvery-white post-transition metal and one of the softest elements. Chemically, indium is similar to gallium and thallium, and its properties are largely intermediate between the two. It was discovered in 1863 by Ferdinand Reich and Hieronymous Theodor Richter by spectroscopic methods and named for the indigo blue line in its spectrum.

<span class="mw-page-title-main">Tellurium</span> Chemical element, symbol Te and atomic number 52

Tellurium is a chemical element; it has symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionally found in its native form as elemental crystals. Tellurium is far more common in the Universe as a whole than on Earth. Its extreme rarity in the Earth's crust, comparable to that of platinum, is due partly to its formation of a volatile hydride that caused tellurium to be lost to space as a gas during the hot nebular formation of Earth.

<span class="mw-page-title-main">Thallium</span> Chemical element, symbol Tl and atomic number 81

Thallium is a chemical element; it has symbol Tl and atomic number 81. It is a gray post-transition metal that is not found free in nature. When isolated, thallium resembles tin, but discolors when exposed to air. Chemists William Crookes and Claude-Auguste Lamy discovered thallium independently in 1861, in residues of sulfuric acid production. Both used the newly developed method of flame spectroscopy, in which thallium produces a notable green spectral line. Thallium, from Greek θαλλός, thallós, meaning "green shoot" or "twig", was named by Crookes. It was isolated by both Lamy and Crookes in 1862; Lamy by electrolysis, and Crookes by precipitation and melting of the resultant powder. Crookes exhibited it as a powder precipitated by zinc at the international exhibition, which opened on 1 May that year.

A metalloid is a type of chemical element which has a preponderance of properties in between, or that are a mixture of, those of metals and nonmetals. There is no standard definition of a metalloid and no complete agreement on which elements are metalloids. Despite the lack of specificity, the term remains in use in the literature of chemistry. Metalloids typically have a metallic appearance but are brittle and not as malleable as metals.

<span class="mw-page-title-main">Boron group</span> Chemical elements in group 13 of the periodic table

The boron group are the chemical elements in group 13 of the periodic table, consisting of boron (B), aluminium (Al), gallium (Ga), indium (In), thallium (Tl) and nihonium (Nh). This group lies in the p-block of the periodic table. The elements in the boron group are characterized by having three valence electrons. These elements have also been referred to as the triels.

<span class="mw-page-title-main">Intermetallic</span> Type of metallic alloy

An intermetallic is a type of metallic alloy that forms an ordered solid-state compound between two or more metallic elements. Intermetallics are generally hard and brittle, with good high-temperature mechanical properties. They can be classified as stoichiometric or nonstoichiometic intermetallic compounds.

Tellurium hexafluoride is the inorganic compound of tellurium and fluorine with the chemical formula TeF6. It is a colorless, highly toxic gas with an unpleasant odor.

<span class="mw-page-title-main">Tellurium tetrafluoride</span> Chemical compound

Tellurium tetrafluoride, TeF4, is a stable, white, hygroscopic crystalline solid and is one of two fluorides of tellurium. The other binary fluoride is tellurium hexafluoride. The widely reported Te2F10 has been shown to be F5TeOTeF5 There are other tellurium compounds that contain fluorine, but only the two mentioned contain solely tellurium and fluorine. Tellurium difluoride, TeF2, and ditellurium difluoride, Te2F2 are not known.

<span class="mw-page-title-main">Tellurium tetrachloride</span> Chemical compound

Tellurium tetrachloride is the inorganic compound with the empirical formula TeCl4. The compound is volatile, subliming at 200 °C at 0.1 mmHg. Molten TeCl4 is ionic, dissociating into TeCl3+ and Te2Cl102−.

<span class="mw-page-title-main">Thallium(I) iodide</span> Chemical compound

Thallium(I) iodide is a chemical compound with the formula . It is unusual in being one of the few water-insoluble metal iodides, along with , , , , and .

Selenium trioxide is the inorganic compound with the formula SeO3. It is white, hygroscopic solid. It is also an oxidizing agent and a Lewis acid. It is of academic interest as a precursor to Se(VI) compounds.

<span class="mw-page-title-main">Organogallium chemistry</span> Chemistry of Organogallium compounds

Organogallium chemistry is the chemistry of organometallic compounds containing a carbon to gallium (Ga) chemical bond. Despite their high toxicity, organogallium compounds have some use in organic synthesis. The compound trimethylgallium is of some relevance to MOCVD as a precursor to gallium arsenide via its reaction with arsine at 700 °C:

<span class="mw-page-title-main">Antimony telluride</span> Chemical compound

Antimony telluride is an inorganic compound with the chemical formula Sb2Te3. As is true of other pnictogen chalcogenide layered materials, it is a grey crystalline solid with layered structure. Layers consist of two atomic sheets of antimony and three atomic sheets of tellurium and are held together by weak van der Waals forces. Sb2Te3 is a narrow-gap semiconductor with a band gap 0.21 eV; it is also a topological insulator, and thus exhibits thickness-dependent physical properties.

Thallane is an inorganic compound with the empirical chemical formula TlH3. It has not yet been obtained in bulk, hence its bulk properties remain unknown. However, molecular thallane has been isolated in solid gas matrices. Thallane is mainly produced for academic purposes.

<span class="mw-page-title-main">Post-transition metal</span> Category of metallic elements

The metallic elements in the periodic table located between the transition metals to their left and the chemically weak nonmetallic metalloids to their right have received many names in the literature, such as post-transition metals, poor metals, other metals, p-block metals and chemically weak metals. The most common name, post-transition metals, is generally used in this article.

<span class="mw-page-title-main">Hydrogen ditelluride</span> Chemical compound

Hydrogen ditelluride or ditellane is an unstable hydrogen dichalcogenide containing two tellurium atoms per molecule, with structure H−Te−Te−H or (TeH)2. Hydrogen ditelluride is interesting to theorists because its molecule is simple yet asymmetric and is predicted to be one of the easiest to detect parity violation, in which the left handed molecule has differing properties to the right handed one due to the effects of the weak force.

Lithium telluride (Li2Te) is an inorganic compound of lithium and tellurium. Along with LiTe3, it is one of the two intermediate solid phases in the lithium-tellurium system. It can be prepared by directly reacting lithium and tellurium in a beryllium oxide crucible at 950°C.

Lithium tritelluride is an intercalary compound of lithium and tellurium with empirical formula LiTe
3
. It is one of three known members of the Li-Te system, the others being the raw metals and lithium telluride.

<span class="mw-page-title-main">Astatine compounds</span>

Astatine compounds are compounds that contain the element astatine (At). As this element is very radioactive, few compounds have been studied. Less reactive than iodine, astatine is the least reactive of the halogens. Its compounds have been synthesized in nano-scale amounts and studied as intensively as possible before their radioactive disintegration. The reactions involved have been typically tested with dilute solutions of astatine mixed with larger amounts of iodine. Acting as a carrier, the iodine ensures there is sufficient material for laboratory techniques to work. Like iodine, astatine has been shown to adopt odd-numbered oxidation states ranging from −1 to +7.

References

  1. 1 2 Okamoto H; Journal of Phase Equilibria, 2000, vol. 21 (5), p. 501
  2. Černý, Radovan; Joubert, Jean-Marc; Filinchuk, Yaroslav; Feutelais, Yves (2002). "Tl2Te and its relationship with Tl5Te3". Acta Crystallographica Section C. 58 (5): i63-5. Bibcode:2002AcCrC..58I..63C. doi:10.1107/S0108270102005085. PMID   11983960.
  3. Phase diagram investigation and thermodynamic evaluation of the thallium-tellurium system Record, MC. Feutelais, Y. Lukas, HL; Z.Metallkd. 1997, vol. 88 (1), p. 45.