Cyanogen fluoride

Last updated
Cyanogen fluoride
Cyanogen fluoride.svg
Cyanogen fluoride Ball and Stick.png
Names
Preferred IUPAC name
Carbononitridic fluoride [1]
Other names
Fluorine cyanide
Cyano fluoride
Cyanogen fluoride
Fluoromethanenitrile
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.298.549 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
  • InChI=1S/CFN/c2-1-3 Yes check.svgY
    Key: CPPKAGUPTKIMNP-UHFFFAOYSA-N Yes check.svgY
  • FC#N
Properties
CFN
Molar mass 45.0158 g mol−1
AppearanceColorless gas
Density 1.026 g mL−1
Boiling point −46 °C (−51 °F; 227 K)
Thermochemistry
Std molar
entropy
(S298)
225.40 J K−1 mol−1
35.98 kJ mol−1
Hazards
GHS labelling:
GHS-pictogram-explos.svg GHS-pictogram-flamme.svg GHS-pictogram-skull.svg
Danger
NFPA 704 (fire diamond)
4
0
2
Related compounds
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Cyanogen fluoride (molecular formula: FCN; IUPAC name: carbononitridic fluoride) is an inorganic linear compound which consists of a fluorine in a single bond with carbon, and a nitrogen in a triple bond with carbon. It is a toxic and explosive gas at room temperature. It is used in organic synthesis and can be produced by pyrolysis of cyanuric fluoride or by fluorination of cyanogen. [2]

Contents

Synthesis

Cyanogen fluoride (FCN), is synthesized by the pyrolysis of cyanuric fluoride (C3N3F3) at 1300 °C and 50mm pressure; [3] this process gives a maximum of 50% yield. Other products observed were cyanogen and CF3CN. [2] For pyrolysis, an induction heated carbon tube with an internal diameter of 0.75 inches is packed with 4 to 8 mesh carbon granules and is surrounded by graphite powder insulation and a water-jacketed shell. [3] [2] The cyanuric fluoride is pyrolyzed (becoming a pyrolysate) at a rate of 50g/hr, and appears as fluffy white solid collected in liquid nitrogen traps. These liquid nitrogen traps are filled to atmospheric pressure with nitrogen or helium. This process yields crude cyanogen fluoride, which is then distilled in a glass column at atmospheric pressure to give pure cyanogen fluoride.

Another method of synthesizing cyanogen fluoride is by the fluorination of cyanogen. [4] Nitrogen trifluoride can fluoridate cyanogen to cyanogen fluoride when both the reactants are injected downstream into the nitrogen arc plasma. [3] With carbonyl fluoride and carbon tetrafluoride, FCN was obtained by passing these fluorides through the arc flame and injecting the cyanogen downstream into the arc plasma.

Properties

Cyanogen fluoride (FCN) is a toxic colorless gas. [3] The linear molecule has a molecular mass of 45.015 gmol−1. [3] [5] Cyanogen fluoride has a boiling point of -46.2 °C and a melting point of -82 °C. The stretching constant for the CN bond was 17.5 mdyn/A and for the CF bond it was 8.07 mdyn/A, but this can vary depending on the interaction constant. [4] At room temperature, the condensed phase converts rapidly to polymeric materials. [3] Liquid FCN explodes at -41 °C when initiated by a squib. [2]

Spectroscopy

The fluorine NMR pattern for FCN showed that there was a triplet peak centered at 80 ppm (3180 cps) with a 32-34 cps splitting between adjacent peaks because of the N14 nucleus. [2] This splitting is absent near freezing point and it collapses to a singlet peak.

The IR spectrum of FCN shows two doublet bands at around 2290 cm−1 (for the C ≡ N)

and 1078 cm−1 (for the C-F). [2] [5] The C-F doublet band has a 24 cm−1 separation between the two branches. A triplet band is observed at around 451 cm−1.

Chemical reactions

Cyanogen fluoride reacts with benzene in the presence of aluminum chloride to form benzonitrile in 20% conversion. [3] It also reacts with olefins to yield an alpha,beta-fluoronitriles. [6] FCN also adds to olefins which have internal double bonds in the presence of strong acid catalyst.

Storage

FCN can be stored in a stainless steel cylinders for over a year when the temperature is -78.5 °C (solid carbon dioxide temperature). [3]

Safety

Cyanogen fluoride undergoes violent reaction when in the presence of boron trifluoride or hydrogen fluoride. [3] Pure gaseous FCN at atmospheric pressure and room temperature does not ignite by a spark or hot wire. [2] FCN air mixtures however are more susceptible to ignition and explosion than pure FCN.

Uses

FCN is useful in synthesis of important compounds such as dyes, fluorescent brighteners and photographic sensitizers. [7] It is also very useful as a fluorinating and nitrilating agent. [6] Beta-fluoronitriles, which are produced when FCN is reacted with olefins, are useful intermediates for preparing polymers, beta-fluorocarboxylic acids and other fluorine containing products. Useful amines can be obtained. Cyanogen fluoride is a very volatile fumigant, disinfectant and animal pest killer.

Related Research Articles

<span class="mw-page-title-main">Bromine</span> Chemical element, symbol Br and atomic number 35

Bromine is a chemical element with the symbol Br and atomic number 35. It is a volatile red-brown liquid at room temperature that evaporates readily to form a similarly coloured vapour. Its properties are intermediate between those of chlorine and iodine. Isolated independently by two chemists, Carl Jacob Löwig and Antoine Jérôme Balard, its name was derived from the Ancient Greek βρῶμος (bromos) meaning "stench", referring to its sharp and pungent smell.

<span class="mw-page-title-main">Nitrogen</span> Chemical element, symbol N and atomic number 7

Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh in total abundance in the Milky Way and the Solar System. At standard temperature and pressure, two atoms of the element bond to form N2, a colorless and odorless diatomic gas. N2 forms about 78% of Earth's atmosphere, making it the most abundant uncombined element. Nitrogen occurs in all organisms, primarily in amino acids (and thus proteins), in the nucleic acids (DNA and RNA) and in the energy transfer molecule adenosine triphosphate. The human body contains about 3% nitrogen by mass, the fourth most abundant element in the body after oxygen, carbon, and hydrogen. The nitrogen cycle describes the movement of the element from the air, into the biosphere and organic compounds, then back into the atmosphere.

<span class="mw-page-title-main">Beckmann rearrangement</span>

The Beckmann rearrangement, named after the German chemist Ernst Otto Beckmann (1853–1923), is a rearrangement of an oxime functional group to substituted amides. The rearrangement has also been successfully performed on haloimines and nitrones. Cyclic oximes and haloimines yield lactams.

In chemistry, an interhalogen compound is a molecule which contains two or more different halogen atoms and no atoms of elements from any other group.

<span class="mw-page-title-main">Carbon tetrafluoride</span> Chemical compound

Tetrafluoromethane, also known as carbon tetrafluoride or R-14, is the simplest perfluorocarbon (CF4). As its IUPAC name indicates, tetrafluoromethane is the perfluorinated counterpart to the hydrocarbon methane. It can also be classified as a haloalkane or halomethane. Tetrafluoromethane is a useful refrigerant but also a potent greenhouse gas. It has a very high bond strength due to the nature of the carbon–fluorine bond.

<span class="mw-page-title-main">Nitrogen trifluoride</span> Chemical compound

Nitrogen trifluoride is an inorganic, colorless, non-flammable, toxic gas with a slightly musty odor. It finds increasing use within the manufacturing of flat-panel displays, photovoltaics, LEDs and other microelectronics. Nitrogen trifluoride is also an extremely strong and long-lived greenhouse gas. Its atmospheric burden exceeded 2 parts per trillion during 2019 and has doubled every five years since the late 20th century.

<span class="mw-page-title-main">Xenon difluoride</span> Chemical compound

Xenon difluoride is a powerful fluorinating agent with the chemical formula XeF
2
, and one of the most stable xenon compounds. Like most covalent inorganic fluorides it is moisture-sensitive. It decomposes on contact with water vapor, but is otherwise stable in storage. Xenon difluoride is a dense, colourless crystalline solid.

Bromine compounds are compounds containing the element bromine (Br). These compounds usually form the -1, +1, +3 and +5 oxidation states. Bromine is intermediate in reactivity between chlorine and iodine, and is one of the most reactive elements. Bond energies to bromine tend to be lower than those to chlorine but higher than those to iodine, and bromine is a weaker oxidising agent than chlorine but a stronger one than iodine. This can be seen from the standard electrode potentials of the X2/X couples (F, +2.866 V; Cl, +1.395 V; Br, +1.087 V; I, +0.615 V; At, approximately +0.3 V). Bromination often leads to higher oxidation states than iodination but lower or equal oxidation states to chlorination. Bromine tends to react with compounds including M–M, M–H, or M–C bonds to form M–Br bonds.

Iodine can form compounds using multiple oxidation states. Iodine is quite reactive, but it is much less reactive than the other halogens. For example, while chlorine gas will halogenate carbon monoxide, nitric oxide, and sulfur dioxide, iodine will not do so. Furthermore, iodination of metals tends to result in lower oxidation states than chlorination or bromination; for example, rhenium metal reacts with chlorine to form rhenium hexachloride, but with bromine it forms only rhenium pentabromide and iodine can achieve only rhenium tetraiodide. By the same token, however, since iodine has the lowest ionisation energy among the halogens and is the most easily oxidised of them, it has a more significant cationic chemistry and its higher oxidation states are rather more stable than those of bromine and chlorine, for example in iodine heptafluoride.

Organofluorine chemistry describes the chemistry of the organofluorines, organic compounds that contain the carbon–fluorine bond. Organofluorine compounds find diverse applications ranging from oil and water repellents to pharmaceuticals, refrigerants, and reagents in catalysis. In addition to these applications, some organofluorine compounds are pollutants because of their contributions to ozone depletion, global warming, bioaccumulation, and toxicity. The area of organofluorine chemistry often requires special techniques associated with the handling of fluorinating agents.

A cyanogen halide is a molecule consisting of cyanide and a halogen. Cyanogen halides are chemically classified as pseudohalogens.

<span class="mw-page-title-main">Cyanuric fluoride</span> Chemical compound

Cyanuric fluoride or 2,4,6-trifluoro-1,3,5-triazine is a chemical compound with the formula (CNF)3. It is a colourless, pungent liquid. It has been used as a precursor for fibre-reactive dyes, as a specific reagent for tyrosine residues in enzymes, and as a fluorinating agent.

<span class="mw-page-title-main">Thiazyl fluoride</span> Chemical compound

Thiazyl fluoride, NSF, is a colourless, pungent gas at room temperature and condenses to a pale yellow liquid at 0.4 °C. Along with thiazyl trifluoride, NSF3, it is an important precursor to sulfur-nitrogen-fluorine compounds. It is notable for its extreme hygroscopicity.

<span class="mw-page-title-main">Fluorine</span> Chemical element, symbol F and atomic number 9

Fluorine is a chemical element with the symbol F and atomic number 9. It is the lightest halogen and exists at standard conditions as a highly toxic, pale yellow diatomic gas. As the most electronegative reactive element, it is extremely reactive, as it reacts with all other elements except for the light inert gases.

Boron monofluoride or fluoroborylene is a chemical compound with formula BF, one atom of boron and one of fluorine. It was discovered as an unstable gas and only in 2009 found to be a stable ligand combining with transition metals, in the same way as carbon monoxide. It is a subhalide, containing fewer than the normal number of fluorine atoms, compared with boron trifluoride. It can also be called a borylene, as it contains boron with two unshared electrons. BF is isoelectronic with carbon monoxide and dinitrogen; each molecule has 14 electrons.

Nitrogen pentafluoride (NF5) is a theoretical compound of nitrogen and fluorine that is hypothesized to exist based on the existence of the pentafluorides of the atoms below nitrogen in the periodic table, such as phosphorus pentafluoride. Theoretical models of the nitrogen pentafluoride molecule are either a trigonal bipyramidal covalently bound molecule with symmetry group D3h, or NF+
4
F, which would be an ionic solid.

<span class="mw-page-title-main">Neptunium(VI) fluoride</span> Chemical compound

Neptunium(VI) fluoride (NpF6) is the highest fluoride of neptunium, it is also one of seventeen known binary hexafluorides. It is an orange volatile crystalline solid. It is relatively hard to handle, being very corrosive, volatile and radioactive. Neptunium hexafluoride is stable in dry air but reacts vigorously with water.

Fluorine forms a great variety of chemical compounds, within which it always adopts an oxidation state of −1. With other atoms, fluorine forms either polar covalent bonds or ionic bonds. Most frequently, covalent bonds involving fluorine atoms are single bonds, although at least two examples of a higher order bond exist. Fluoride may act as a bridging ligand between two metals in some complex molecules. Molecules containing fluorine may also exhibit hydrogen bonding. Fluorine's chemistry includes inorganic compounds formed with hydrogen, metals, nonmetals, and even noble gases; as well as a diverse set of organic compounds. For many elements the highest known oxidation state can be achieved in a fluoride. For some elements this is achieved exclusively in a fluoride, for others exclusively in an oxide; and for still others the highest oxidation states of oxides and fluorides are always equal.

<span class="mw-page-title-main">Fluorine azide</span> Chemical compound

Fluorine azide or triazadienyl fluoride is a yellow green gas composed of nitrogen and fluorine with formula FN3. The bond between the fluorine atom and the nitrogen is very weak, leading to this substance being very unstable and prone to explosion. Calculations show the F–N–N angle to be around 102° with a straight line of 3 nitrogen atoms.

<span class="mw-page-title-main">Trifluoramine oxide</span> Chemical compound

Trifluoramine oxide or Nitrogen trifluoride oxide (F3NO) is an inorganic molecule with strong fluorinating powers.

References

  1. "Cyanogen fluoride - Compound Summary". PubChem Compound. USA: National Center for Biotechnology Information. 27 March 2005. Identification. Retrieved 6 June 2012.
  2. 1 2 3 4 5 6 7 Fawcett, F. S.; Lipscomb, R. D. (July 1964). "Cyanogen Fluoride: Synthesis and Properties". Journal of the American Chemical Society. 86 (13): 2576. doi:10.1021/ja01067a011.
  3. 1 2 3 4 5 6 7 8 9 Fawcett, F. S.; Lipscomb, R. D. (March 1960). "Cyanogen Fluoride". Journal of the American Chemical Society. 82 (6): 1509–1510. doi:10.1021/ja01491a064. ISSN   0002-7863.
  4. 1 2 Shurvell, Herbert F. (November 1970). "Force constants and thermodynamic properties of the unstable linear triatomic molecules hypocyanic acid, deuterated hypocyinic acid, and cyanogen fluoride". The Journal of Physical Chemistry. 74 (24): 4257–4259. doi:10.1021/j100718a013. ISSN   0022-3654.
  5. 1 2 Dodd, R.E.; Little, R. (1960). "The infra-red spectrum of fluorine cyanide". Spectrochimica Acta. 16 (9): 1083–1087. Bibcode:1960AcSpe..16.1083D. doi:10.1016/0371-1951(60)80148-8.
  6. 1 2 Lipscomb, R. D., & Smith, W. C. (1961). U.S. Patent No. 3,008,798. Washington, DC: U.S. Patent and Trademark Office.
  7. Bernardi, Fernando; Cacace, Fulvio; Occhiucci, Giorgio; Ricci, Andreina; Rossi, Ivan (June 2000). "Protonated Cyanogen Fluoride. Structure, Stability, and Reactivity of (FCN)H+Ions". The Journal of Physical Chemistry A. 104 (23): 5545–5550. Bibcode:2000JPCA..104.5545B. doi:10.1021/jp993986b. ISSN   1089-5639.