Germanium(II) hydroxide

Last updated

Germanium(II) hydroxide, normally written as Ge(OH)2, is a poorly characterised compound, sometimes called hydrous germanium(II) oxide or germanous hydroxide. It was first reported by Winkler in 1886. [1]

Properties and preparation

Germanium(II) hydroxide is formed as a white or yellow precipitate when base is added to solutions containing GeII, produced for example by the reduction of an acid solution of germanium dioxide, GeO2, with hypophosphorous acid, H3PO2, [2] or alternatively by hydrolysis of GeCl2. [3] The initial precipitate, which has no definite stoichiometry, can be represented by GeO·xH2O, Ge(OH)2·xH2O, or loosely Ge(OH)2. It is only slightly soluble in water or alkali [4] and not appreciably soluble in perchloric acid, HClO4, [2] but is soluble in hydrochloric acid, HCl. [2] On digestion with sodium hydroxide, NaOH, it yields a brown insoluble compound, which after drying in vacuo forms a brown pyrophoric substance with the approximate stoichiometry of (HGe)2O3. On the basis of the infrared spectrum, (HGe)2O3 may contain a germanium hydrogen bond, Ge-H. [4]

Related Research Articles

Hydroxide Chemical compound

Hydroxide is a diatomic anion with chemical formula OH. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. It functions as a base, a ligand, a nucleophile, and a catalyst. The hydroxide ion forms salts, some of which dissociate in aqueous solution, liberating solvated hydroxide ions. Sodium hydroxide is a multi-million-ton per annum commodity chemical. The corresponding electrically neutral compound HO is the hydroxyl radical. The corresponding covalently bound group –OH of atoms is the hydroxy group. Hydroxide ion and hydroxy group are nucleophiles and can act as catalysts in organic chemistry.

Base (chemistry) Type of chemical substance

In chemistry, there are three definitions in common use of the word base, known as Arrhenius bases, Brønsted bases, and Lewis bases. All definitions agree that bases are substances which react with acids as originally proposed by G.-F. Rouelle in the mid-18th century.

In chemistry, an amphoteric compound is a molecule or ion that can react both as an acid and as a base. What exactly this can mean depends on which definitions of acids and bases are being used. The prefix of the word 'amphoteric' is derived from a Greek prefix amphi which means "both".

Iron(III) oxide Chemical compound

Iron(III) oxide or ferric oxide is the inorganic compound with the formula Fe2O3. It is one of the three main oxides of iron, the other two being iron(II) oxide (FeO), which is rare; and iron(II,III) oxide (Fe3O4), which also occurs naturally as the mineral magnetite. As the mineral known as hematite, Fe2O3 is the main source of iron for the steel industry. Fe2O3 is readily attacked by acids. Iron(III) oxide is often called rust, and to some extent this label is useful, because rust shares several properties and has a similar composition; however, in chemistry, rust is considered an ill-defined material, described as Hydrous ferric oxide.

Basic copper carbonate Chemical compound

Basic copper carbonate is a chemical compound, more properly called copper(II) carbonate hydroxide. It is an ionic compound consisting of the ions copper(II) Cu2+
, carbonate CO2−
3
, and hydroxide OH
.

Calcium hydroxide Inorganic compound of formula Ca(OH)2

Calcium hydroxide (traditionally called slaked lime) is an inorganic compound with the chemical formula Ca(OH)2. It is a colorless crystal or white powder and is produced when quicklime (calcium oxide) is mixed or slaked with water. It has many names including hydrated lime, caustic lime, builders' lime, slaked lime, cal, and pickling lime. Calcium hydroxide is used in many applications, including food preparation, where it has been identified as E number E526. Limewater, also called milk of lime, is the common name for a saturated solution of calcium hydroxide.

Classical qualitative inorganic analysis is a method of analytical chemistry which seeks to find the elemental composition of inorganic compounds. It is mainly focused on detecting ions in an aqueous solution, therefore materials in other forms may need to be brought to this state before using standard methods. The solution is then treated with various reagents to test for reactions characteristic of certain ions, which may cause color change, precipitation and other visible changes.

Gold(III) chloride Chemical compound

Gold(III) chloride, traditionally called auric chloride, is a compound of gold and chlorine with the molecular formula Au2Cl6. The "III" in the name indicates that the gold has an oxidation state of +3, typical for many gold compounds. Gold(III) chloride is hygroscopic and decomposes in visible light. This compound is a dimer of AuCl3. This compound has few uses, although it catalyzes various organic reactions.

Silver oxide Chemical compound

Silver oxide is the chemical compound with the formula Ag2O. It is a fine black or dark brown powder that is used to prepare other silver compounds.

Iron(III) oxide-hydroxide Chemical compound

Iron(III) oxide-hydroxide or ferric oxyhydroxide is the chemical compound of iron, oxygen, and hydrogen with formula FeO(OH).

Zinc hydroxide Zn(OH)2 is an inorganic chemical compound. It also occurs naturally as 3 rare minerals: wülfingite (orthorhombic), ashoverite and sweetite (both tetragonal).

Chloroauric acid Chemical compound

Chloroauric acid refers to inorganic compounds with the chemical formula H[AuCl4nH2O. Both the trihydrate and tetrahydrate are known. Both are orange-yellow solids consisting of the planar [AuCl4] anion. Often chloroauric acid is handled as a solution, such as those obtained by dissolution of gold in aqua regia. These solutions can be converted to other gold complexes or reduced to metallic gold or gold nanoparticles.

Barium ferrate Chemical compound

Barium ferrate is the chemical compound of formula BaFeO4. This is a rare compound containing iron in the +6 oxidation state. The ferrate(VI) ion has two unpaired electrons, making it paramagnetic. It is isostructural with BaSO4, and contains the tetrahedral [FeO4]2− anion.

Germanium dichloride is a chemical compound of germanium and chlorine with the formula GeCl2. It is a solid and contains germanium in the +2 oxidation state.

Cobalt(II) hydroxide Chemical compound

Cobalt(II) hydroxide or cobaltous hydroxide is the inorganic compound with the formula Co(OH)
2
, consisting of divalent cobalt cations Co2+
and hydroxide anions HO
. The pure compound, often called the "beta form" is a pink solid insoluble in water.

Germanate

In chemistry, germanate is a compound containing an oxyanion of germanium. In the naming of inorganic compounds it is a suffix that indicates a polyatomic anion with a central germanium atom, for example potassium hexafluorogermanate, K2GeF6.

Compounds of lead exist with lead in two main oxidation states: +2 and +4. The former is more common. Inorganic lead(IV) compounds are typically strong oxidants or exist only in highly acidic solutions.

Indium(III) hydroxide is the chemical compound with the formula In(OH)3. Its prime use is as a precursor to indium(III) oxide, In2O3. It is sometimes found as the rare mineral dzhalindite.

Sodium germanate Chemical compound

Sodium germanate is an inorganic compound with the formula Na2GeO3. It is a colorless solid. Sodium germanate is primarily used for the synthesis of other germanium compounds.

An yttrium compound is a chemical compound containing yttrium. Among these compounds, yttrium generally has a +3 valence. The solubility properties of yttrium compounds are similar to those of the lanthanides. For example oxalates and carbonates are hardly soluble in water, but soluble in excess oxalate or carbonate solutions as complexes are formed. Sulfates and double sulfates are generally soluble. They resemble the "yttrium group" of heavy lanathanide elements.

References

  1. Everest, David A.; Terrey, Henry (1950). "467. Germanous oxide and sulphide". Journal of the Chemical Society (Resumed): 2282. doi:10.1039/jr9500002282. ISSN   0368-1769.
  2. 1 2 3 Babich, Olga A.; Ghosh, Manik C.; Gould, Edwin S. (2000). "Preparation of aqueous solutions of hypovalent germanium; reactions involving germanium-(ii) and -(iii)". Chemical Communications (11): 907–908. doi:10.1039/b000401o. ISSN   1359-7345.
  3. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  4. 1 2 Yang, Duck J.; Jolly, William L.; O'Keefe, Anthony. (1977). "Conversion of hydrous germanium(II) oxide to germynyl sesquioxide, (HGe)2O3". Inorganic Chemistry. 16 (11): 2980–2982. doi:10.1021/ic50177a070. ISSN   0020-1669.