Aluminium hydroxide

Last updated

Aluminium hydroxide
Gibbsite-crystal-3D-balls.png
Hydroxid hlinity.PNG
Names
Preferred IUPAC name
Aluminium hydroxide
Systematic IUPAC name
Aluminium(3+) trioxidanide
Other names
Aluminic acid

Aluminic hydroxide
Aluminium(III) hydroxide
Aluminium hydroxide
Aluminum trihydroxide
Hydrated alumina

Orthoaluminic acid

Contents

Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.040.433
KEGG
PubChem CID
RTECS number BD0940000
UNII
Properties [1] [2]
Al(OH)3
Molar mass 78.00 g/mol
AppearanceWhite amorphous powder
Density 2.42 g/cm3, solid
Melting point 300 °C (572 °F; 573 K)
0.0001 g/100 mL
3×10−34
Solubility soluble in acids and alkalis
Acidity (pKa)>7
Isoelectric point 7.7
Thermochemistry [3]
−1277 kJ·mol−1
Pharmacology [4]
A02AB01 ( WHO )
  • US: B (No risk in non-human studies)
    Hazards
    Safety data sheet External MSDS
    GHS pictograms GHS-pictogram-exclam.svg
    H319, H335
    P264, P261, P280, P271, P312, P304+340, P305+351+338, P337+313
    NFPA 704
    Flammability code 0: Will not burn. E.g., waterHealth code 1: Exposure would cause irritation but only minor residual injury. E.g., turpentineReactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogenSpecial hazards (white): no codeAluminium hydroxide
    0
    1
    0
    Flash point Non-flammable
    Lethal dose or concentration (LD, LC):
    >5000 mg/kg (rat, oral)
    Related compounds
    Other anions
    None
    Related compounds
    Sodium oxide,
    aluminium oxide hydroxide
    Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
    X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)
    Infobox references

    Aluminium hydroxide, Al(OH)3, is found in nature as the mineral gibbsite (also known as hydrargillite) and its three much rarer polymorphs: bayerite, doyleite, and nordstrandite. Aluminium hydroxide is amphoteric in nature, i.e., it has both basic and acidic properties. Closely related are aluminium oxide hydroxide, AlO(OH), and aluminium oxide or alumina (Al2O3), the latter of which is also amphoteric. These compounds together are the major components of the aluminium ore bauxite.

    Gibbsite form of aluminium hydroxide, mineral

    Gibbsite, Al(OH)3, is one of the mineral forms of aluminium hydroxide. It is often designated as γ-Al(OH)3 (but sometimes as α-Al(OH)3.). It is also sometimes called hydrargillite (or hydrargyllite).

    In materials science, polymorphism is the ability of a solid material to exist in more than one form or crystal structure. Polymorphism can potentially be found in any crystalline material including polymers, minerals, and metals, and is related to allotropy, which refers to chemical elements. The complete morphology of a material is described by polymorphism and other variables such as crystal habit, amorphous fraction or crystallographic defects. Polymorphism is relevant to the fields of pharmaceuticals, agrochemicals, pigments, dyestuffs, foods, and explosives.

    In chemistry, an amphoteric compound is a molecule or ion that can react both as an acid and as a base. Many metals (such as copper, zinc, tin, lead, aluminium, and beryllium) form amphoteric oxides or hydroxides. Amphoterism depends on the oxidation states of the oxide. Al2O3 is an example of an amphoteric oxide.

    Nomenclature

    The naming for the different forms of aluminium hydroxide is ambiguous and there is no universal standard. All four polymorphs have a chemical composition of aluminium trihydroxide (one aluminium atom attached to three hydroxide groups). [5]

    Aluminium Chemical element with atomic number 13

    Aluminium or aluminum is a chemical element with symbol Al and atomic number 13. It is a silvery-white, soft, nonmagnetic and ductile metal in the boron group. By mass, aluminium makes up about 8% of the Earth's crust; it is the third most abundant element after oxygen and silicon and the most abundant metal in the crust, though it is less common in the mantle below. The chief ore of aluminium is bauxite. Aluminium metal is so chemically reactive that native specimens are rare and limited to extreme reducing environments. Instead, it is found combined in over 270 different minerals.

    Hydroxide anion

    Hydroxide is a diatomic anion with chemical formula OH. It consists of an oxygen and hydrogen atom held together by a covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. It functions as a base, a ligand, a nucleophile, and a catalyst. The hydroxide ion forms salts, some of which dissociate in aqueous solution, liberating solvated hydroxide ions. Sodium hydroxide is a multi-million-ton per annum commodity chemical. A hydroxide attached to a strongly electropositive center may itself ionize, liberating a hydrogen cation (H+), making the parent compound an acid.

    Gibbsite is also known as hydrargillite, named after the Greek words for water (hydra) and clay (argylles). The first compound named hydrargillite was thought to be aluminium hydroxide, but was later found to be aluminium phosphate; despite this, both gibbsite and hydrargillite are used to refer to the same polymorphism of aluminium hydroxide, with gibbsite used most commonly in the United States and hydrargillite used more often in Europe. In 1930, it was referred to as α-alumina trihydrate to contrast it with bayerite, which was called β-alumina trihydrate (the alpha and beta designations were used to differentiate the more- and less-common forms respectively). In 1957, a symposium on alumina nomenclature attempted to develop a universal standard, resulting in gibbsite being designated γ-Al(OH)3, bayerite becoming α-Al(OH)3, and nordstrandite being designated Al(OH)3. Based on their crystallographic properties, a suggested nomenclature and designation is for gibbsite to be α-Al(OH)3, bayerite to be designated β-Al(OH)3, and both nordstrandite and doyleite are designated Al(OH)3. Under this designation, the α and β prefixes refer to hexagonal, close-packed structures and altered or dehydrated polymorphisms respectively, with no differentiation between nordstrandite and doyleite. [5]

    Greek language language spoken in Greece, Cyprus and Southern Albania

    Greek is an independent branch of the Indo-European family of languages, native to Greece, Cyprus and other parts of the Eastern Mediterranean and the Black Sea. It has the longest documented history of any living Indo-European language, spanning more than 3000 years of written records. Its writing system has been the Greek alphabet for the major part of its history; other systems, such as Linear B and the Cypriot syllabary, were used previously. The alphabet arose from the Phoenician script and was in turn the basis of the Latin, Cyrillic, Armenian, Coptic, Gothic, and many other writing systems.

    Aluminium phosphate is a chemical compound. In nature it occurs as the mineral berlinite. Many synthetic forms of aluminium phosphate are known. They have framework structures similar to zeolites and some are used as catalysts, ion-exchangers or molecular sieves. Commercial aluminium phosphate gel is available.

    Aluminium oxide chemical compound

    Aluminium oxide (IUPAC name) or aluminum oxide (American English) is a chemical compound of aluminium and oxygen with the chemical formula Al2O3. It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium(III) oxide. It is commonly called alumina and may also be called aloxide, aloxite, or alundum depending on particular forms or applications. It occurs naturally in its crystalline polymorphic phase α-Al2O3 as the mineral corundum, varieties of which form the precious gemstones ruby and sapphire. Al2O3 is significant in its use to produce aluminium metal, as an abrasive owing to its hardness, and as a refractory material owing to its high melting point.

    Properties

    Gibbsite has a typical metal hydroxide structure with hydrogen bonds. It is built up of double layers of hydroxyl groups with aluminium ions occupying two-thirds of the octahedral holes between the two layers. [6] [7]

    Aluminium hydroxide is amphoteric. In acid, it acts as a Brønsted-Lowry base by picking up hydrogen ions and neutralizes the acid, yielding a salt: [8]

    Acid type of chemical substance that reacts with a base

    An acid is a molecule or ion capable of donating a hydron (proton or hydrogen ion H+), or, alternatively, capable of forming a covalent bond with an electron pair (a Lewis acid).

    3HCl + Al(OH)3 → AlCl3 + 3H2O

    In bases, it acts a Lewis acid by taking an electron pair from the hydroxide ions: [8]

    Lewis acids and bases

    A Lewis acid is a chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct. A Lewis base, then, is any species that has a filled orbital containing an electron pair which is not involved in bonding but may form a dative bond with a Lewis acid to form a Lewis adduct. For example, NH3 is a Lewis base, because it can donate its lone pair of electrons. Trimethylborane (Me3B) is a Lewis acid as it is capable of accepting a lone pair. In a Lewis adduct, the Lewis acid and base share an electron pair furnished by the Lewis base, forming a dative bond. In the context of a specific chemical reaction between NH3 and Me3B, the lone pair from NH3 will form a dative bond with the empty orbital of Me3B to form an adduct NH3•BMe3. The terminology refers to the contributions of Gilbert N. Lewis.

    Al(OH)3 + OH → Al(OH)4

    Polymorphism

    Four polymorphs of aluminium hydroxide exist, all based on the common combination of one aluminium atom and three hydroxide molecules into different crystalline arrangements that determine the appearance and properties of the compound. The four combinations are: [5]

    All polymorphs are composed of layers of octahedral aluminium hydroxide units with the aluminium atom in the centre and the hydroxyl groups on the sides, with hydrogen bonds holding the layers together. The polymorphisms vary in how the layers stack together, with the arrangements of the molecules and layers determined by the acidity, presence of ions (including salt) and the surface of the minerals the substance forms on. Under most conditions, gibbsite is the most chemically stable form of aluminium hydroxide. All forms of Al(OH)3 crystals are hexagonal. [5]

    Production

    Virtually all the aluminium hydroxide used commercially is manufactured by the Bayer process [9] which involves dissolving bauxite in sodium hydroxide at temperatures up to 270 °C (518 °F). The waste solid, bauxite tailings, is removed and aluminium hydroxide is precipitated from the remaining solution of sodium aluminate. This aluminium hydroxide can be converted to aluminium oxide or alumina by calcination.

    The residue or bauxite tailings, which is mostly iron oxide, is highly caustic due to residual sodium hydroxide. It was historically stored in lagoons; this led to the Ajka alumina plant accident in 2010 in Hungary, where a dam bursting led to the drowning of nine people. An additional 122 sought treatment for chemical burns. The mud contaminated 40 square kilometres (15 sq mi) of land and reached the Danube. While the mud was considered non-toxic due to low levels of heavy metals, the associated slurry had pH of 13. [10]

    Uses

    One of the major uses of aluminium hydroxide is as a feedstock for the manufacture of other aluminium compounds: speciality calcined aluminas, aluminium sulfate, polyaluminium chloride, aluminium chloride, zeolites, sodium aluminate, activated alumina, and aluminium nitrate. [7]

    Freshly precipitated aluminium hydroxide forms gels, which are the basis for the application of aluminium salts as flocculants in water purification. This gel crystallizes with time. Aluminium hydroxide gels can be dehydrated (e.g. using water-miscible non-aqueous solvents like ethanol) to form an amorphous aluminium hydroxide powder, which is readily soluble in acids. Aluminium hydroxide powder which has been heated to an elevated temperature under carefully controlled conditions is known as activated alumina and is used as a desiccant, as an adsorbent in gas purification, as a Claus catalyst support for water purification, and as an adsorbent for the catalyst during the manufacture of polyethylene by the Sclairtech process.[ citation needed ]

    Fire retardant

    Aluminium hydroxide also finds use as a fire retardant filler for polymer applications in a similar way to magnesium hydroxide and mixtures of huntite and hydromagnesite. [11] [12] [13] [14] [15] It decomposes at about 180 °C (356 °F), absorbing a considerable amount of heat in the process and giving off water vapour. In addition to behaving as a fire retardant, it is very effective as a smoke suppressant in a wide range of polymers, most especially in polyesters, acrylics, ethylene vinyl acetate, epoxies, PVC and rubber. [16]

    Pharmaceutical

    Under the generic name "algeldrate", aluminium hydroxide is used as an antacid in humans and animals (mainly cats and dogs). It is preferred over other alternatives such as sodium bicarbonate because Al(OH)3, being insoluble, does not increase the pH of stomach above 7 and hence, does not trigger secretion of excess acid by the stomach. Brand names include Alu-Cap, Aludrox, Gaviscon or Pepsamar. It reacts with excess acid in the stomach, reducing the acidity of the stomach content, [17] [18] which may relieve the symptoms of ulcers, heartburn or dyspepsia. Such products can cause constipation, because the aluminium ions inhibit the contractions of smooth muscle cells in the gastrointestinal tract, slowing peristalsis and lengthening the time needed for stool to pass through the colon. [19] Some such products (such as Maalox) are formulated to minimize such effects through the inclusion of equal concentrations of magnesium hydroxide or magnesium carbonate, which have counterbalancing laxative effects. [20]

    This compound is also used to control hyperphosphatemia (elevated phosphate, or phosphorus, levels in the blood) in people and animals suffering from kidney failure. Normally, the kidneys filter excess phosphate out from the blood, but kidney failure can cause phosphate to accumulate. The aluminium salt, when ingested, binds to phosphate in the intestines and reduce the amount of phosphorus that can be absorbed. [21] [22]

    Precipitated aluminium hydroxide is included as an adjuvant in some vaccines (e.g. anthrax vaccine). One of the well-known brands of aluminium hydroxide adjuvant is Alhydrogel, made by Brenntag Biosector. [23] [ full citation needed ] Since it absorbs protein well, it also functions to stabilize vaccines by preventing the proteins in the vaccine from precipitating or sticking to the walls of the container during storage. Aluminium hydroxide is sometimes called "alum", a term generally reserved for one of several sulfates.[ citation needed ]

    Vaccine formulations containing aluminium hydroxide stimulate the immune system by inducing the release of uric acid, an immunological danger signal. This strongly attracts certain types of monocytes which differentiate into dendritic cells. The dendritic cells pick up the antigen, carry it to lymph nodes, and stimulate T cells and B cells. [24] It appears to contribute to induction of a good Th2 response, so is useful for immunizing against pathogens that are blocked by antibodies. However, it has little capacity to stimulate cellular (Th1) immune responses, important for protection against many pathogens, [25] nor is it useful when the antigen is peptide-based. [26]

    Potential adverse effects

    In the 1960s and 1970s it was speculated that aluminium was related to various neurological disorders, including Alzheimer's disease. [27] [28] Since then, multiple epidemiological studies have found no connection between exposure to aluminium and neurological disorders. [29] [30] [31]

    Related Research Articles

    Bauxite aluminium ore

    Bauxite is a sedimentary rock with a relatively high aluminium content. It is the world's main source of aluminium. Bauxite consists mostly of the aluminium minerals gibbsite (Al(OH)3), boehmite (γ-AlO(OH)) and diaspore (α-AlO(OH)), mixed with the two iron oxides goethite and haematite, the aluminium clay mineral kaolinite and small amounts of anatase (TiO2) and ilmenite (FeTiO3 or FeO.TiO2).

    Magnesium hydroxide chemical compound

    Magnesium hydroxide is the inorganic compound with the chemical formula Mg(OH)2. It occurs in nature as the mineral brucite. It is a white solid with low solubility in water (Ksp = 5.61×10−12). Magnesium hydroxide is a common component of antacids, such as milk of magnesia, as well as laxatives.

    Brucite hydroxide mineral

    Brucite is the mineral form of magnesium hydroxide, with the chemical formula Mg(OH)2. It is a common alteration product of periclase in marble; a low-temperature hydrothermal vein mineral in metamorphosed limestones and chlorite schists; and formed during serpentinization of dunites. Brucite is often found in association with serpentine, calcite, aragonite, dolomite, magnesite, hydromagnesite, artinite, talc and chrysotile.

    The Bayer process is the principal industrial means of refining bauxite to produce alumina (aluminium oxide). Bauxite, the most important ore of aluminium, contains only 30–60% aluminium oxide (Al2O3), the rest being a mixture of silica, various iron oxides, and titanium dioxide. The aluminium oxide must be purified before it can be refined to aluminium metal.

    The term flame retardants subsumes a diverse group of chemicals which are added to manufactured materials, such as plastics and textiles, and surface finishes and coatings. Flame retardants are activated by the presence of an ignition source and are intended to prevent or slow the further development of ignition by a variety of different physical and chemical methods. They may be added as a copolymer during the polymerisation of a polymer, mixed with polymer at an moulding or extrusion process or, in particular for textiles, applied as a topical finish. Mineral flame retardants are typically additive while organohalogen and organophosphorus compounds can be either reactive or additive.

    Boehmite hydroxide mineral

    Boehmite or böhmite is an aluminium oxide hydroxide mineral, a component of the aluminium ore bauxite. It is dimorphous with diaspore. It crystallizes in the orthorhombic dipyramidal system and is typically massive in habit. It is white with tints of yellow, green, brown or red due to impurities. It has a vitreous to pearly luster, a Mohs hardness of 3 to 3.5 and a specific gravity of 3.00 to 3.07. It is colorless in thin section, optically biaxial positive with refractive indices of nα = 1.644 - 1.648, nβ = 1.654 - 1.657 and nγ = 1.661 - 1.668.

    Aluminium chloride chemical compound

    Aluminium chloride (AlCl3) is the main compound of aluminium and chlorine. It is white, but samples are often contaminated with iron(III) chloride, giving it a yellow color. The solid has a low melting and boiling point. It is mainly produced and consumed in the production of aluminium metal, but large amounts are also used in other areas of chemical industry. The compound is often cited as a Lewis acid. It is an example of an inorganic compound that reversibly changes from a polymer to a monomer at mild temperature.

    Aluminium sulfate chemical compound

    Aluminium sulfate is a chemical compound with the formula Al2(SO4)3. It is soluble in water and is mainly used as a coagulating agent (promoting particle collision by neutralizing charge) in the purification of drinking water and waste water treatment plants, and also in paper manufacturing.

    Sodium aluminate chemical compound

    Sodium aluminate is an inorganic chemical that is used as an effective source of aluminium hydroxide for many industrial and technical applications. Pure sodium aluminate (anhydrous) is a white crystalline solid having a formula variously given as NaAlO2, NaAl(OH)4 (hydrated), Na2O·Al2O3, or Na2Al2O4. Commercial sodium aluminate is available as a solution or a solid.
    Other related compounds, sometimes called sodium aluminate, prepared by reaction of Na2O and Al2O3 are Na5AlO4 which contains discrete AlO45− anions, Na7Al3O8 and Na17Al5O16 which contain complex polymeric anions, and NaAl11O17, once mistakenly believed to be β-alumina, a phase of aluminium oxide.

    Hydromagnesite carbonate mineral

    Hydromagnesite is a hydrated magnesium carbonate mineral with the formula Mg5(CO3)4(OH)2·4H2O.

    A fire retardant is a substance that is used to slow or stop the spread of fire or reduce its intensity. This is commonly accomplished by chemical reactions that reduce the flammability of fuels or delay their combustion. Fire retardants may also cool the fuel through physical action or endothermic chemical reactions. Fire retardants are available as powder, to be mixed with water, as fire-fighting foams and fire-retardant gels. Fire retardants are also available as coatings or sprays to be applied to an object.

    Carl Josef Bayer was an Austrian chemist who invented the Bayer process of extracting alumina from bauxite, essential to this day to the economical production of aluminium.

    Zinc hydroxide Zn(OH)2 is an inorganic chemical compound. It also occurs naturally as 3 rare minerals: wülfingite (orthorhombic), ashoverite and sweetite (both tetragonal).

    Aluminium hydroxide oxide or aluminium oxyhydroxide, AlO(OH) is found as one of two well defined crystalline phases, which are also known as the minerals boehmite and diaspore. The minerals are important constituents of the aluminium ore, bauxite.

    Sodium aluminium phosphate (SAlP) describes the inorganic compounds consisting of sodium salts of aluminium phosphates. The most common SAlP has the formulas NaH14Al3(PO4)8·4H2O and Na3H15Al2(PO4)8. These materials are prepared by combining alumina, phosphoric acid, and sodium hydroxide.

    Bauxite tailings

    Bauxite tailings, also known as red mud, red sludge, bauxite residue, or alumina refinery residues (ARR), is a highly alkaline waste product composed mainly of iron oxide that is generated in the industrial production of alumina. Annually, about 77 million tons of the red special waste are produced, causing a serious disposal problem in the mining industry. The scale of production makes the waste product an important one, and issues with its storage are reviewed and every opportunity is explored to find uses for it.

    References

    1. For solubility product: "Archived copy". Archived from the original on 15 June 2012. Retrieved 2012-05-17.CS1 maint: Archived copy as title (link)
    2. For isoelectric point: Gayer, K. H.; Thompson, L. C.; Zajicek, O. T. (September 1958). "The solubility of aluminum hydroxide in acidic and basic media at 25 ?c". Canadian Journal of Chemistry. 36 (9): 1268–1271. doi:10.1139/v58-184. ISSN   0008-4042.
    3. Zumdahl, Steven S. (2009). Chemical Principles (6th ed.). Houghton Mifflin Company. ISBN   978-0-618-94690-7.
    4. Black, Ronald A.; Hill, D. Ashley (2003-06-15). "Over-the-Counter Medications in Pregnancy". American Family Physician. 67 (12): 2517–2524. ISSN   0002-838X . Retrieved 2017-07-01.
    5. 1 2 3 4 Karamalidis, AK; Dzombak DA (2010). Surface Complexation Modeling: Gibbsite. John Wiley & Sons. pp. 15–17. ISBN   978-0-470-58768-3.
    6. Wells, A.F. (1975), Structural Inorganic Chemistry (4th ed.), Oxford: Clarendon Press
    7. 1 2 Evans, KA (1993). "Properties and uses of aluminium oxides and aluminium hydroxides". In A. J. Downs. Chemistry of aluminium, gallium, indium, and thallium (1st ed.). London; New York: Blackie Academic & Professional. ISBN   9780751401035.
    8. 1 2 Boundless (2016-07-26). "Basic and Amphoteric Hydroxides". Boundless Chemistry. Retrieved 2017-07-02.
    9. Hind, AR; Bhargava SK; Grocott SC (1999). "The Surface Chemistry of Bayer Process Solids: A Review". Colloids Surf Physiochem Eng Aspects. 146 (1–3): 359–74. doi:10.1016/S0927-7757(98)00798-5.
    10. "Hungary Battles to Stem Torrent of Toxic Sludge". BBC News Website. 5 October 2010.
    11. Hollingbery, LA; Hull TR (2010). "The Fire Retardant Behaviour of Huntite and Hydromagnesite - A Review" (PDF). Polymer Degradation and Stability. 95 (12): 2213–2225. doi:10.1016/j.polymdegradstab.2010.08.019.
    12. Hollingbery, LA; Hull TR (2010). "The Thermal Decomposition of Huntite and Hydromagnesite - A Review" (PDF). Thermochimica Acta. 509 (1–2): 1–11. doi:10.1016/j.tca.2010.06.012.
    13. Hollingbery, LA; Hull TR (2012). "The Fire Retardant Effects of Huntite in Natural Mixtures with Hydromagnesite" (PDF). Polymer Degradation and Stability. 97 (4): 504–512. doi:10.1016/j.polymdegradstab.2012.01.024.
    14. Hollingbery, LA; Hull TR (2012). "The Thermal Decomposition of Natural Mixtures of Huntite and Hydromagnesite" (PDF). Thermochimica Acta. 528: 45–52. doi:10.1016/j.tca.2011.11.002.
    15. Hull, TR; Witkowski A; Hollingbery LA (2011). "Fire Retardant Action of Mineral Fillers" (PDF). Polymer Degradation and Stability. 96 (8): 1462–1469. doi:10.1016/j.polymdegradstab.2011.05.006.
    16. Huber Engineered Materials. "Huber Non-Halogen Fire Retardant Additives" (PDF). Retrieved 2017-07-03.
    17. Galbraith, A; Bullock, S; Manias, E; Hunt, B; Richards, A (1999). Fundamentals of pharmacology: a text for nurses and health professionals. Harlow: Pearson. p. 482.
    18. Papich, Mark G. (2007). "Aluminum Hydroxide and Aluminum Carbonate". Saunders Handbook of Veterinary Drugs (2nd ed.). St. Louis, Mo: Saunders/Elsevier. pp. 15–16. ISBN   9781416028888.
    19. Washington, Neena (2 August 1991). Antacids and Anti Reflux Agents. Boca Raton, FL: CRC Press. p. 10. ISBN   978-0-8493-5444-1.
    20. Bill, Robert L. (2016-09-01). Clinical Pharmacology and Therapeutics for Veterinary Technicians - E-Book. Elsevier Health Sciences. p. 105. ISBN   9780323444026.
    21. Plumb, Donald C. (2011). "Aluminum Hydroxide". Plumb's Veterinary Drug Handbook (7th ed.). Stockholm, Wisconsin; Ames, Iowa: Wiley. pp. 36–37. ISBN   9780470959640.
    22. Lifelearn Inc. (2010-11-01). "Aluminum Hydroxide". Know Your Pet. Retrieved 2017-06-30.
    23. "About Brenntag Biosector - Brenntag". www.brenntag.com. Retrieved 19 April 2018.
    24. Kool, M; Soullié T; van Nimwegen M; Willart MA; Muskens F; Jung S; Hoogsteden HC; Hammad H; Lambrecht BN (2008-03-24). "Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells". J Exp Med. 205 (4): 869–82. doi:10.1084/jem.20071087. PMC   2807488 . PMID   18362170.
    25. Petrovsky N, Aguilar JC (2004). "Vaccine adjuvants: current state and future trends". Immunol Cell Biol. 82 (5): 488–96. doi:10.1111/j.0818-9641.2004.01272.x. PMID   15479434.
    26. Cranage, MP; Robinson A (2003). Robinson A; Hudson MJ; Cranage MP, eds. Vaccine Protocols - Volume 87 of Methods in Molecular Medicine Biomed Protocols (2nd ed.). Springer. p. 176. ISBN   978-1-59259-399-6.
    27. "Alzheimer's Myth's". Alzheimer's Association . Retrieved 2012-07-29.
    28. Khan, A (1 September 2008). "Aluminium and Alzheimer's disease". Alzheimer's Society. Archived from the original on 11 March 2012. Retrieved 8 March 2012.
    29. Rondeau V (2002). "A review of epidemiologic studies on aluminum and silica in relation to Alzheimer's disease and associated disorders". Rev Environ Health. 17 (2): 107–21. doi:10.1515/REVEH.2002.17.2.107. PMC   4764671 . PMID   12222737.
    30. Martyn CN, Coggon DN, Inskip H, Lacey RF, Young WF (May 1997). "Aluminum concentrations in drinking water and risk of Alzheimer's disease". Epidemiology. 8 (3): 281–6. doi:10.1097/00001648-199705000-00009. JSTOR   3702254. PMID   9115023.
    31. Graves AB, Rosner D, Echeverria D, Mortimer JA, Larson EB (September 1998). "Occupational exposures to solvents and aluminium and estimated risk of Alzheimer's disease". Occup Environ Med. 55 (9): 627–33. doi:10.1136/oem.55.9.627. PMC   1757634 . PMID   9861186.