Aluminium arsenide

Last updated
Aluminium arsenide
Boron-phosphide-unit-cell-1963-CM-3D-balls.png
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.041.126 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 245-555-0
PubChem CID
  • InChI=1S/Al.As Yes check.svgY
    Key: MDPILPRLPQYEEN-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/Al.As/rAlAs/c1-2
    Key: MDPILPRLPQYEEN-LYSWLDLJAW
  • [AsH+]12[Al-][AsH+]3[Al-][AsH+]([AlH-]14)[AlH-]1[As+]5([AlH-]38)[Al-]26[AsH+]2[AlH-]([As+]4)[AsH+]1[Al-][AsH+]3[AlH-]2[As+][AlH-]([AsH+]6[AlH-]([AsH+])[AsH+]68)[AsH+]([Al-]6)[AlH-]35
Properties
AlAs
Molar mass 101.9031 g/mol
Appearanceorange crystals
Density 3.72 g/cm3
Melting point 1,740 °C (3,160 °F; 2,010 K)
reacts
Solubility reacts in ethanol
Band gap 2.12 eV (indirect) [1]
Electron mobility 200 cm2/(V·s) (300 K)
Thermal conductivity 0.9 W/(cm·K) (300 K)
3 (infrared)
Structure
Zinc Blende
T2d-F-43m
a = 566.0 pm
Tetrahedral
Thermochemistry
Std molar
entropy
(S298)
60.3 J/mol K
-116.3 kJ/mol
Hazards
NIOSH (US health exposure limits):
PEL (Permissible)
[1910.1018] TWA 0.010 mg/m3 [2]
REL (Recommended)
Ca C 0.002 mg/m3 [15-minute] [2]
IDLH (Immediate danger)
Ca [5 mg/m3 (as As)] [2]
Related compounds
Related semiconductor materials
Aluminium gallium arsenide, Aluminium indium arsenide, Aluminium antimonide, Boron arsenide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Aluminium arsenide ( Al As ) is a semiconductor material with almost the same lattice constant as gallium arsenide and aluminium gallium arsenide and wider band gap than gallium arsenide. (AlAs) can form a superlattice with gallium arsenide (GaAs) which results in its semiconductor properties. [3] Because GaAs and AlAs have almost the same lattice constant, the layers have very little induced strain, which allows them to be grown almost arbitrarily thick. This allows for extremely high performance high electron mobility, HEMT transistors, and other quantum well devices. [4] [ page needed ]

Contents

Properties

It has the following properties: [5]

Uses

Aluminium arsenide is a III-V compound semiconductor material and is an advantageous material for the manufacture of optoelectronic devices, such as light emitting diodes.

Aluminium arsenide can be prepared using well-known methods, such as liquid and vapor-phase epitaxy techniques or melt-growth techniques. However, aluminium arsenide crystals prepared by these methods are generally unstable and generate arsine (As H 3) when exposed to moist air.

Synthesis

Little work has been reported on the preparation of aluminium arsenide, mainly because of the practical difficulties involved. Preparation from the melt is difficult because of the high melting point of the compound (about 1,700 °C) and of the extreme reactivity of aluminium at this temperature. A few workers have prepared small crystals from the melt, and polycrystalline ingots have also been produced. The best of this material has an impurity carrier density of the order of 1019/cm3 and is p-type. [7]

Reactivity

Aluminium arsenide is a stable compound; however, acid, acid fumes and moisture should be avoided. Hazardous polymerization will not occur. Decomposition of aluminium arsenide produces hazardous arsine gas and arsenic fumes.

Toxicity

The chemical, physical and toxicological properties of aluminium arsenide have not been thoroughly investigated and recorded.

Aluminium compounds have many commercial uses and are commonly found in industry. Many of these materials are active chemically and thus exhibit dangerous toxic and reactive properties.

Effects of exposure

Aluminium compounds have many commercial uses and are commonly found in industry. Many of these materials are active chemically and thus exhibit dangerous toxic and reactive properties. The chemical, physical and toxicological properties of aluminium arsenide have not been thoroughly investigated and recorded; however, there are some known chronic and acute symptoms based on chemical delivery.

Inhalation of aluminium arsenide may cause acute irritation to the respiratory system. It may also cause chronic arsenic poisoning, ulceration of the nasal septum, liver damage and cancer/diseases of the blood, kidneys and nervous system. Aluminium arsenide is poisonous if ingested and may cause gastrointestinal and skin effects and acute arsenic poisoning. Chronic implications from ingestion include arsenic poisoning, gastrointestinal disturbances, liver damage, and cancer/disease of the blood, kidneys and nervous system. If applied to the skin, aluminium arsenide may cause acute irritation, but there are no chronic health effects recorded. [8] [ page needed ]

Special precautions

Precautions to be taken in handling and storage: Store in a cool, dry place in tightly sealed containers. Ensure there is good ventilation. Open and handle container with care. AlAs reacts on contact with acids or moisture to give a host of volatile, highly toxic arsenic compounds such as Arsine.

Related Research Articles

<span class="mw-page-title-main">Arsenic</span> Chemical element, symbol As and atomic number 33

Arsenic is a chemical element with the symbol As and atomic number 33. Arsenic occurs in many minerals, usually in combination with sulfur and metals, but also as a pure elemental crystal. Arsenic is a metalloid. It has various allotropes, but only the gray form, which has a metallic appearance, is important to industry.

<span class="mw-page-title-main">Gallium</span> Chemical element, symbol Ga and atomic number 31

Gallium is a chemical element with the symbol Ga and atomic number 31. Discovered by the French chemist Paul-Émile Lecoq de Boisbaudran in 1875, gallium is in group 13 of the periodic table and is similar to the other metals of the group.

<span class="mw-page-title-main">Aluminium gallium arsenide</span> Semiconductor material

Aluminium gallium arsenide (AlxGa1−xAs) is a semiconductor material with very nearly the same lattice constant as GaAs, but a larger bandgap. The x in the formula above is a number between 0 and 1 - this indicates an arbitrary alloy between GaAs and AlAs.

<span class="mw-page-title-main">Gallium arsenide</span> Chemical compound

Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a zinc blende crystal structure.

<span class="mw-page-title-main">Boron group</span> Chemical elements in group 13 of the periodic table

The boron group are the chemical elements in group 13 of the periodic table, comprising boron (B), aluminium (Al), gallium (Ga), indium (In), thallium (Tl), and nihonium (Nh). The elements in the boron group are characterized by having three valence electrons. These elements have also been referred to as the triels.

<span class="mw-page-title-main">Lewisite</span> Chemical compound

Lewisite (L) (A-243) is an organoarsenic compound. It was once manufactured in the U.S., Japan, Germany and the Soviet Union for use as a chemical weapon, acting as a vesicant and lung irritant. Although the substance is colorless and odorless in its pure form, impure samples of lewisite are a yellow, brown, violet-black, green, or amber oily liquid with a distinctive odor that has been described as similar to geraniums.

<span class="mw-page-title-main">Arsine</span> Chemical compound

Arsine (IUPAC name: arsane) is an inorganic compound with the formula AsH3. This flammable, pyrophoric, and highly toxic pnictogen hydride gas is one of the simplest compounds of arsenic. Despite its lethality, it finds some applications in the semiconductor industry and for the synthesis of organoarsenic compounds. The term arsine is commonly used to describe a class of organoarsenic compounds of the formula AsH3−xRx, where R = aryl or alkyl. For example, As(C6H5)3, called triphenylarsine, is referred to as "an arsine".

<span class="mw-page-title-main">Stibine</span> Chemical compound

Stibine (IUPAC name: stibane) is a chemical compound with the formula SbH3. A pnictogen hydride, this colourless, highly toxic gas is the principal covalent hydride of antimony, and a heavy analogue of ammonia. The molecule is pyramidal with H–Sb–H angles of 91.7° and Sb–H distances of 170.7 pm (1.707 Å). This gas has an offensive smell like hydrogen sulfide (rotten eggs).

In chemistry, an arsenide is a compound of arsenic with a less electronegative element or elements. Many metals form binary compounds containing arsenic, and these are called arsenides. They exist with many stoichiometries, and in this respect arsenides are similar to phosphides.

<span class="mw-page-title-main">Arsenic trioxide</span> Chemical compound (industrial chemical and medication)

Arsenic trioxide, sold under the brand name Trisenox among others, is an inorganic compound and medication. As an industrial chemical, its major uses include the manufacture of wood preservatives, pesticides, and glass. As a medication, it is used to treat a type of cancer known as acute promyelocytic leukemia. For this use it is given by injection into a vein.

Indium gallium arsenide (InGaAs) is a ternary alloy of indium arsenide (InAs) and gallium arsenide (GaAs). Indium and gallium are elements of the periodic table while arsenic is a element. Alloys made of these chemical groups are referred to as "III-V" compounds. InGaAs has properties intermediate between those of GaAs and InAs. InGaAs is a room-temperature semiconductor with applications in electronics and photonics.

<span class="mw-page-title-main">Metalorganic vapour-phase epitaxy</span> Method of producing thin films (polycrystalline and single crystal)

Metalorganic vapour-phase epitaxy (MOVPE), also known as organometallic vapour-phase epitaxy (OMVPE) or metalorganic chemical vapour deposition (MOCVD), is a chemical vapour deposition method used to produce single- or polycrystalline thin films. It is a process for growing crystalline layers to create complex semiconductor multilayer structures. In contrast to molecular-beam epitaxy (MBE), the growth of crystals is by chemical reaction and not physical deposition. This takes place not in vacuum, but from the gas phase at moderate pressures. As such, this technique is preferred for the formation of devices incorporating thermodynamically metastable alloys, and it has become a major process in the manufacture of optoelectronics, such as Light-emitting diodes. It was invented in 1968 at North American Aviation Science Center by Harold M. Manasevit.

<span class="mw-page-title-main">Gallium antimonide</span> Chemical compound

Gallium antimonide (GaSb) is a semiconducting compound of gallium and antimony of the III-V family. It has a lattice constant of about 0.61 nm. It has a band gap of 0.67 eV.

<span class="mw-page-title-main">Aluminium phosphide</span> Chemical compound

Aluminium phosphide is a highly toxic inorganic compound with the chemical formula AlP, used as a wide band gap semiconductor and a fumigant. This colorless solid is generally sold as a grey-green-yellow powder due to the presence of impurities arising from hydrolysis and oxidation.

<span class="mw-page-title-main">Organogallium chemistry</span>

Organogallium chemistry is the chemistry of organometallic compounds containing a carbon to gallium (Ga) chemical bond. Despite their high toxicity, organogallium compounds have some use in organic synthesis. The compound trimethylgallium is of some relevance to MOCVD as a precursor to gallium arsenide via its reaction with arsine at 700 °C:

<span class="mw-page-title-main">Lewisite 2</span> Chemical compound

Lewisite 2(L-2) is an organoarsenic chemical weapon with the formula AsCl(CH=CHCl)2. It is similar to lewisite 1 and lewisite 3 and was first synthesized in 1904 by Julius Arthur Nieuwland. It is usually found as a mixture of 2-chlorovinylarsonous dichloride (lewisite 1) as well as bis(2-chloroethenyl) arsinous chloride (lewisite 2) and tris(2-chlorovinyl)arsine (lewisite 3). Pure lewisite 1 is an oily, colorless liquid, however, the impure mixture can appear amber to black with an odor distinct to geraniums.

<span class="mw-page-title-main">Lewisite 3</span> Chemical compound

Lewisite 3(L-3) is an organoarsenic chemical weapon like lewisite 1 and lewisite 2 first synthesized in 1904 by Julius Arthur Nieuwland. It is usually found as a mixture of 2-chlorovinylarsonous dichloride as well as bis(2-chloroethenyl) arsinous chloride and tris(2-chlorovinyl)arsine. Pure lewisite 1 is an oily, colorless liquid, however, the impure mixture can appear amber to black with an odor distinct to geraniums.

Gallium compounds are compounds containing the element gallium. These compounds are found primarily in the +3 oxidation state. The +1 oxidation state is also found in some compounds, although it is less common than it is for gallium's heavier congeners indium and thallium. For example, the very stable GaCl2 contains both gallium(I) and gallium(III) and can be formulated as GaIGaIIICl4; in contrast, the monochloride is unstable above 0 °C, disproportionating into elemental gallium and gallium(III) chloride. Compounds containing Ga–Ga bonds are true gallium(II) compounds, such as GaS (which can be formulated as Ga24+(S2−)2) and the dioxan complex Ga2Cl4(C4H8O2)2.

<span class="mw-page-title-main">Arsenic compounds</span> Chemical compounds containing arsenic

Compounds of arsenic resemble in some respects those of phosphorus which occupies the same group (column) of the periodic table. The most common oxidation states for arsenic are: −3 in the arsenides, which are alloy-like intermetallic compounds, +3 in the arsenites, and +5 in the arsenates and most organoarsenic compounds. Arsenic also bonds readily to itself as seen in the square As3−
4
ions in the mineral skutterudite. In the +3 oxidation state, arsenic is typically pyramidal owing to the influence of the lone pair of electrons.

References

  1. "AlxGa1−xAs". Ioffe Database. Sankt-Peterburg: FTI im. A. F. Ioffe, RAN.
  2. 1 2 3 NIOSH Pocket Guide to Chemical Hazards. "#0038". National Institute for Occupational Safety and Health (NIOSH).
  3. Guo, L. "Structural, Energetic, and Electronic Properties of Hydrogenated Aluminum Arsenide Clusters". Journal of Nanoparticle Research. Vol. 13 Issue 5 p. 2029-2039. 2011.
  4. S. Adachi, GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties. (World Scientific, Singapore, 1994)
  5. Berger, L. I. (1996). Semiconductor Materials . CRC Press. p.  125. ISBN   978-0-8493-8912-2.
  6. 1 2 3 4 Dierks, S. "Aluminum Arsenide - Material Safety Data" Archived 2013-10-29 at the Wayback Machine . The Fitzgerald Group, MIT, 1994.
  7. Willardson, R., and Goering, H. (eds.), Compound Semiconductors, pp. 1, 184 (Reinhold Pub. Corp., New York, 1962).
  8. Sax. Dangerous Properties of Industrial Materials. Eighth edition. 2005.