Indium arsenide antimonide, also known as indium antimonide arsenide or InAsSb (In As 1-x Sb x), is a ternary III-V semiconductor compound. It can be considered as an alloy between indium arsenide (InAs) and indium antimonide (InSb). The alloy can contain any ratio between arsenic and antimony. InAsSb refers generally to any composition of the alloy.
InAsSb films have been grown by molecular beam epitaxy (MBE), metalorganic vapor phase epitaxy (MOVPE) and liquid phase epitaxy (LPE) on gallium arsenide and gallium antimonide substrates. It is often incorporated into layered heterostructures with other III-V compounds.
Between 524 °C and 942 °C (the melting points of pure InSb and InAs, respectively), InAsSb can exist at a two-phase liquid-solid equilibrium, depending on temperature and average composition of the alloy. [1] [2]
InAsSb possesses an additional miscibility gap at temperatures below approximately 503 °C. [2] This means that intermediate compositions of the alloy below this temperature are thermodynamically unstable and can spontaneously separate into two phases: one InAs-rich and one InSb-rich. This limits the compositions of InAsSb that can be obtained by near-equilibrium growth techniques, such as LPE, to those outside of the miscibility gap. [1] However, compositions of InAsSb within the miscibility gap can be obtained with non-equilibrium growth techniques, such as MBE and MOVPE. By carefully selecting the growth conditions and maintaining relatively low temperatures during and after growth, it is possible to obtain compositions of InAsSb within the miscibility gap that are kinetically stable.
The bandgap and lattice constant of InAsSb alloys are between those of pure InAs (a = 0.606 nm, Eg = 0.35 eV) and InSb (a = 0.648 nm, Eg = 0.17 eV). [3] Over all compositions, the band gap is direct, like in InAs and InSb. The direct bandgap displays strong bowing, reaching a minimum with respect to composition at approximately x = 0.62 at room temperature and lower temperatures. The following empirical relationship has been suggested for the direct bandgap of InAsSb in eV as a function of composition (0 < x < 1) and temperature (in Kelvin): [1]
This equation is plotted in the figures, using a suggested bowing parameter of C = 0.75 eV. Slightly different relations have also been suggested for Eg as a function of composition and temperature, depending on the material quality, strain, and defect density.
Because of its small direct bandgap, InAsSb has been extensively studied over the last few decades, predominantly for use in mid- to long-wave infrared photodetectors that operate at room temperature and cryogenic temperatures. [1] InAsSb is used as the active material in some commercially available infrared photodetectors. Depending on the heterostructure and detector configuration that is used, InAsSb-based detectors can operate at wavelengths ranging from approximately 2 μm to 11 μm.
Aluminium gallium arsenide (AlxGa1−xAs) is a semiconductor material with very nearly the same lattice constant as GaAs, but a larger bandgap. The x in the formula above is a number between 0 and 1 - this indicates an arbitrary alloy between GaAs and AlAs.
In inorganic chemistry and materials chemistry, a ternary compound or ternary phase is a chemical compound containing three different elements.
Indium antimonide (InSb) is a crystalline compound made from the elements indium (In) and antimony (Sb). It is a narrow-gap semiconductor material from the III-V group used in infrared detectors, including thermal imaging cameras, FLIR systems, infrared homing missile guidance systems, and in infrared astronomy. Indium antimonide detectors are sensitive to infrared wavelengths between 1 and 5 μm.
Indium gallium arsenide (InGaAs) is a ternary alloy of indium arsenide (InAs) and gallium arsenide (GaAs). Indium and gallium are group III elements of the periodic table while arsenic is a group V element. Alloys made of these chemical groups are referred to as "III-V" compounds. InGaAs has properties intermediate between those of GaAs and InAs. InGaAs is a room-temperature semiconductor with applications in electronics and photonics.
Hg1−xCdxTe or mercury cadmium telluride is a chemical compound of cadmium telluride (CdTe) and mercury telluride (HgTe) with a tunable bandgap spanning the shortwave infrared to the very long wave infrared regions. The amount of cadmium (Cd) in the alloy can be chosen so as to tune the optical absorption of the material to the desired infrared wavelength. CdTe is a semiconductor with a bandgap of approximately 1.5 eV at room temperature. HgTe is a semimetal, which means that its bandgap energy is zero. Mixing these two substances allows one to obtain any bandgap between 0 and 1.5 eV.
An infrared detector is a detector that reacts to infrared (IR) radiation. The two main types of detectors are thermal and photonic (photodetectors).
Indium gallium nitride is a semiconductor material made of a mix of gallium nitride (GaN) and indium nitride (InN). It is a ternary group III/group V direct bandgap semiconductor. Its bandgap can be tuned by varying the amount of indium in the alloy. InxGa1−xN has a direct bandgap span from the infrared for InN to the ultraviolet of GaN. The ratio of In/Ga is usually between 0.02/0.98 and 0.3/0.7.
Aluminium antimonide (AlSb) is a semiconductor of the group III-V family containing aluminium and antimony. The lattice constant is 0.61 nm. The indirect bandgap is approximately 1.6 eV at 300 K, whereas the direct band gap is 2.22 eV.
Gallium antimonide (GaSb) is a semiconducting compound of gallium and antimony of the III-V family. It has a room temperature lattice constant of about 0.610 nm. It has a room temperature direct bandgap of approximately 0.73 eV.
Aluminium indium arsenide, also indium aluminium arsenide or AlInAs (AlxIn1−xAs), is a ternary III-V semiconductor compound with very nearly the same lattice constant as InGaAs, but a larger bandgap. It can be considered as an alloy between aluminium arsenide (AlAs) and indium arsenide (InAs). AlInAs refers generally to any composition of the alloy.
Zinc antimonide (ZnSb), (Zn3Sb2), (Zn4Sb3) is an inorganic chemical compound. The Zn-Sb system contains six intermetallics. Like indium antimonide, aluminium antimonide, and gallium antimonide, it is a semiconducting intermetallic compound. It is used in transistors, infrared detectors and thermal imagers, as well as magnetoresistive devices.
Gallium indium arsenide antimonide phosphide is a semiconductor material.
Indium arsenide antimonide phosphide is a semiconductor material.
Indium gallium arsenide phosphide is a quaternary compound semiconductor material, an alloy of gallium arsenide, gallium phosphide, indium arsenide, or indium phosphide. This compound has applications in photonic devices, due to the ability to tailor its band gap via changes in the alloy mole ratios, x and y.
Aluminium indium antimonide, also known as indium aluminium antimonide or AlInSb (AlxIn1-xSb), is a ternary III-V semiconductor compound. It can be considered as an alloy between aluminium antimonide and indium antimonide. The alloy can contain any ratio between aluminium and indium. AlInSb refers generally to any composition of the alloy.
Aluminium gallium antimonide, also known as gallium aluminium antimonide or AlGaSb (AlxGa1-xSb), is a ternary III-V semiconductor compound. It can be considered as an alloy between aluminium antimonide and gallium antimonide. The alloy can contain any ratio between aluminium and gallium. AlGaSb refers generally to any composition of the alloy.
Gallium arsenide antimonide, also known as gallium antimonide arsenide or GaAsSb, is a ternary III-V semiconductor compound; x indicates the fractions of arsenic and antimony in the alloy. GaAsSb refers generally to any composition of the alloy. It is an alloy of gallium arsenide (GaAs) and gallium antimonide (GaSb).
Gallium indium antimonide, also known as indium gallium antimonide, GaInSb, or InGaSb (GaxIn1-xSb), is a ternary III-V semiconductor compound. It can be considered as an alloy between gallium antimonide and indium antimonide. The alloy can contain any ratio between gallium and indium. GaInSb refers generally to any composition of the alloy.
Aluminium arsenide antimonide, or AlAsSb (AlAs1-xSbx), is a ternary III-V semiconductor compound. It can be considered as an alloy between aluminium arsenide and aluminium antimonide. The alloy can contain any ratio between arsenic and antimony. AlAsSb refers generally to any composition of the alloy.