Arsenide

Last updated
Arsenide
Identifiers
3D model (JSmol)
ChemSpider
  • InChI=1S/As/q-3 Yes check.svgY
    Key: PVBJMPGOALGYQS-UHFFFAOYSA-N Yes check.svgY
  • [As-3]
Properties
As3−
Molar mass 74.921595 g·mol−1
Related compounds
Other anions
Phosphide
Antimonide
Bismuthide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

In chemistry, an arsenide is a compound of arsenic with a less electronegative element or elements. Many metals form binary compounds containing arsenic, and these are called arsenides. They exist with many stoichiometries, and in this respect arsenides are similar to phosphides. [1]

Contents

Alkali metal and alkaline earth arsenides

The group 1 alkali metals and the group 2, alkaline earth metals, form arsenides with isolated arsenic atoms. They form upon heating arsenic powder with excess sodium gives sodium arsenide (Na3As). The structure of Na3As is complex with unusually short Na–Na distances of 328–330 pm which are shorter than in sodium metal. This short distance indicates the complex bonding in these simple phases, i.e. they are not simply salts of As3− anion, for example. [1] The compound LiAs, has a metallic lustre and electrical conductivity indicating some metallic bonding. [1] These compounds are mainly of academic interest. For example, "sodium arsenide" is a structural motif adopted by many compounds with the A3B stoichiometry.

Indicative of their salt-like properties, hydrolysis of alkali metal arsenides gives arsine:

Na3As + 3 H2O → AsH3 + 3 NaOH
Nickel arsenide is a common impurity in ores of nickel. It is also a prototype of a class of structures. Nickeline.jpg
Nickel arsenide is a common impurity in ores of nickel. It is also a prototype of a class of structures.

III–V compounds

Many arsenides of the group 13 elements (group III) are valuable semiconductors. Gallium arsenide (GaAs) features isolated arsenic centers with a zincblende structure (wurtzite structure can eventually also form in nanostructures), and with predominantly covalent bonding – it is a III–V semiconductor.

II–V compounds

Arsenides of the group 12 elements (group II) are also noteworthy. Cadmium arsenide (Cd3As2) was shown to be a three-dimensional (3D) topological Dirac semimetal analogous to graphene. [2] [3] Cd3As2, Zn3As2 and other compounds of the Zn-Cd-P-As quaternary system have very similar crystalline structures, which can be considered distorted mixtures of the zincblende and antifluorite crystalline structures. [4]

Polyarsenides

Transition metal arsenides

Arsenic anionics are known to catenate, that is, form chains, rings, and cages. The mineral skutterudite (CoAs3) features rings that are usually described as As4−
4
. [1] Assigning formal oxidation numbers is difficult because these materials are highly covalent and often are best described with band theory. Sperrylite (PtAs2) is usually described as Pt4+
As4−
2
. The arsenides of the transition metals are mainly of interest because they contaminate sulfidic ores of commercial interest. The extraction of the metals – nickel, iron, cobalt, copper – entails chemical processes such as smelting that poses environmental risks. In the mineral, arsenic is immobile and poses no environmental risk. Released from the mineral, arsenic is poisonous and mobile.

Zintl phases

Structure of [As7] subunit in the Zintl phase Cs2NaAs7. 423080Asonly.png
Structure of [As7] subunit in the Zintl phase Cs2NaAs7.

Partial reduction of arsenic with alkali metals (and related electropositive elements) affords polyarsenic compounds, which are members of the Zintl phases.

See also

Related Research Articles

<span class="mw-page-title-main">Alkali metal</span> Group of highly reactive chemical elements

The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), and francium (Fr). Together with hydrogen they constitute group 1, which lies in the s-block of the periodic table. All alkali metals have their outermost electron in an s-orbital: this shared electron configuration results in their having very similar characteristic properties. Indeed, the alkali metals provide the best example of group trends in properties in the periodic table, with elements exhibiting well-characterised homologous behaviour. This family of elements is also known as the lithium family after its leading element.

A metalloid is a type of chemical element which has a preponderance of properties in between, or that are a mixture of, those of metals and nonmetals. There is no standard definition of a metalloid and no complete agreement on which elements are metalloids. Despite the lack of specificity, the term remains in use in the literature of chemistry.

<span class="mw-page-title-main">Cubic crystal system</span> Crystallographic system where the unit cell is in the shape of a cube

In crystallography, the cubiccrystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals.

<span class="mw-page-title-main">Cadmium arsenide</span> Chemical compound

Cadmium arsenide (Cd3As2) is an inorganic semimetal in the II-V family. It exhibits the Nernst effect.

<span class="mw-page-title-main">Chalcogenide</span>

A chalcogenide is a chemical compound consisting of at least one chalcogen anion and at least one more electropositive element. Although all group 16 elements of the periodic table are defined as chalcogens, the term chalcogenide is more commonly reserved for sulfides, selenides, tellurides, and polonides, rather than oxides. Many metal ores exist as chalcogenides. Photoconductive chalcogenide glasses are used in xerography. Some pigments and catalysts are also based on chalcogenides. The metal dichalcogenide MoS2 is a common solid lubricant.

In chemistry, a Zintl phase is a product of a reaction between a group 1 or group 2 and main group metal or metalloid. It is characterized by intermediate metallic/ionic bonding. Zintl phases are a subgroup of brittle, high-melting intermetallic compounds that are diamagnetic or exhibit temperature-independent paramagnetism and are poor conductors or semiconductors.

<span class="mw-page-title-main">Eduard Zintl</span> German chemist (1898–1941)

Eduard Zintl was a German chemist. He gained prominence for research on intermetallic compounds.

<span class="mw-page-title-main">Post-transition metal</span> Category of metallic elements

The metallic elements in the periodic table located between the transition metals to their left and the chemically weak nonmetallic metalloids to their right have received many names in the literature, such as post-transition metals, poor metals, other metals, p-block metals and chemically weak metals. The most common name, post-transition metals, is generally used in this article.

<span class="mw-page-title-main">Weyl semimetal</span> Concept in quantum physics

Weyl fermions are massless chiral fermions embodying the mathematical concept of a Weyl spinor. Weyl spinors in turn play an important role in quantum field theory and the Standard Model, where they are a building block for fermions in quantum field theory. Weyl spinors are a solution to the Dirac equation derived by Hermann Weyl, called the Weyl equation. For example, one-half of a charged Dirac fermion of a definite chirality is a Weyl fermion.

<span class="mw-page-title-main">Sodium arsenide</span> Chemical compound

Sodium arsenide, also known as trisodium arsenide, is the inorganic compound of sodium and arsenic with the formula Na3As. It is a dark colored solid that degrades upon contact with water or air. It is prepared by the reaction of the elements at 200–400 °C. The compound is mainly of interest as exhibiting an archetypal structure. The normal pressure "sodium arsenide" phase is adopted by many alkali metal pnictides. At 3.6 gigapascals, Na3As adopts the Li3Bi structure, which is another archetypal structure. Sodium arsenide is a crystalline solid used as a semiconductor and in photo optic applications. Its IUPAC name is disodioarsanylsodium.

The term Dirac matter refers to a class of condensed matter systems which can be effectively described by the Dirac equation. Even though the Dirac equation itself was formulated for fermions, the quasi-particles present within Dirac matter can be of any statistics. As a consequence, Dirac matter can be distinguished in fermionic, bosonic or anyonic Dirac matter. Prominent examples of Dirac matter are Graphene, topological insulators, Dirac semimetals, Weyl semimetals, various high-temperature superconductors with -wave pairing and liquid Helium-3. The effective theory of such systems is classified by a specific choice of the Dirac mass, the Dirac velocity, the Dirac matrices and the space-time curvature. The universal treatment of the class of Dirac matter in terms of an effective theory leads to a common features with respect to the density of states, the heat capacity and impurity scattering.

<span class="mw-page-title-main">Allotropes of arsenic</span>

Arsenic in the solid state can be found as gray, black, or yellow allotropes. These various forms feature diverse structural motifs, with yellow arsenic enabling the widest range of reactivity. In particular, reaction of yellow arsenic with main group and transition metal elements results in compounds with wide-ranging structural motifs, with butterfly, sandwich and realgar-type moieties featuring most prominently.

Zinc cadmium phosphide arsenide (Zn-Cd-P-As) is a quaternary system of group II (IUPAC group 12) and group V (IUPAC group 15) elements. Many of the inorganic compounds in the system are II-V semiconductor materials. The quaternary system of II3V2 compounds, (Zn1−xCdx)3(P1−yAsy)2, has been shown to allow solid solution continuously over the whole compositional range. This material system and its subsets have applications in electronics, optoelectronics, including photovoltaics, and thermoelectrics.

Arsenidosilicates are chemical compounds that contain anions with arsenic bonded to silicon. They are in the category of tetrelarsenides, pnictidosilicates, or tetrelpnictides. They can be classed as Zintl phases or intermetallics. They are analogous to the nitridosilicates, phosphidosilicates, arsenidogermanates, and arsenidostannates. They are distinct from arsenate silicates which have oxygen connected with arsenic and silicon, or arsenatosilicates with arsenate groups sharing oxygen with silicate.

Arsenidogermanates are chemical compounds that contain anions with arsenic bonded to germanium. They are in the category of tetrelarsenides, pnictidogermanates, or tetrelpnictides.

Arsenidostanates are chemical compounds that contain anions with arsenic bonded to tin. They are in the category of tetrelarsenides, pnictidostancates, or tetrelpnictides.

Niobium phosphide is an inorganic compound of niobium and phosphorus with the chemical formula NbP.

<span class="mw-page-title-main">Arsenic compounds</span> Chemical compounds containing arsenic

Compounds of arsenic resemble in some respects those of phosphorus which occupies the same group (column) of the periodic table. The most common oxidation states for arsenic are: −3 in the arsenides, which are alloy-like intermetallic compounds, +3 in the arsenites, and +5 in the arsenates and most organoarsenic compounds. Arsenic also bonds readily to itself as seen in the square As3−
4
ions in the mineral skutterudite. In the +3 oxidation state, arsenic is typically pyramidal owing to the influence of the lone pair of electrons.

<span class="mw-page-title-main">Bismuth compounds</span>

Bismuth compounds are compounds containing the element bismuth (Bi). Bismuth forms trivalent and pentavalent compounds, the trivalent ones being more common. Many of its chemical properties are similar to those of arsenic and antimony, although they are less toxic than derivatives of those lighter elements.

References

  1. 1 2 3 4 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  2. Neupane, M.; Xu, S. Y.; Sankar, R.; Alidoust, N.; Bian, G.; Liu, C.; Belopolski, I.; Chang, T. R.; Jeng, H. T.; Lin, H.; Bansil, A.; Chou, F.; Hasan, M. Z. (2014). "Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2". Nature Communications. 5: 3786. arXiv: 1309.7892 . Bibcode:2014NatCo...5.3786N. doi:10.1038/ncomms4786. PMID   24807399. S2CID   32847905.
  3. Liu, Z. K.; Jiang, J.; Zhou, B.; Wang, Z. J.; Zhang, Y.; Weng, H. M.; Prabhakaran, D.; Mo, S. K.; Peng, H.; Dudin, P.; Kim, T.; Hoesch, M.; Fang, Z.; Dai, X.; Shen, Z. X.; Feng, D. L.; Hussain, Z.; Chen, Y. L. (2014). "A stable three-dimensional topological Dirac semimetal Cd3As2". Nature Materials. 13 (7): 677–81. Bibcode:2014NatMa..13..677L. doi:10.1038/nmat3990. PMID   24859642.
  4. Trukhan, V. M.; Izotov, A. D.; Shoukavaya, T. V. (2014). "Compounds and solid solutions of the Zn-Cd-P-As system in semiconductor electronics". Inorganic Materials. 50 (9): 868–873. doi:10.1134/S0020168514090143. S2CID   94409384.
  5. He, Hua; Tyson, C.-T.; Bobev, S. (2011). "New compounds with (As7)3− Clusters: Synthesis and Crystal Structures of the Zintl Phases Cs2NaAs7, Cs4ZnAs14 and Cs4CdAs14". Crystals. 1 (3): 87–p98. doi: 10.3390/cryst1030087 .