Aluminium phosphate

Last updated
Aluminium phosphate
Fosforecnan hlinity.PNG
Aluminium-3D-vdW.png
Phosphate-3D-vdW.png
Names
Other names
Aluminum phosphate
Aluminium monophosphate
Phosphoric acid, aluminium salt (1:1)
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.029.142 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 232-056-9
PubChem CID
RTECS number
  • TB6450000
UNII
UN number 1760
  • InChI=1S/Al.H3O4P/c;1-5(2,3)4/h;(H3,1,2,3,4)/q+3;/p-3 Yes check.svgY
    Key: ILRRQNADMUWWFW-UHFFFAOYSA-K Yes check.svgY
  • InChI=1/Al.H3O4P/c;1-5(2,3)4/h;(H3,1,2,3,4)/q+3;/p-3/rAlO4P/c2-6-3-1(4-6)5-6
    Key: ILRRQNADMUWWFW-ITXURHEJAW
  • InChI=1/Al.H3O4P/c;1-5(2,3)4/h;(H3,1,2,3,4)/q+3;/p-3
    Key: ILRRQNADMUWWFW-DFZHHIFOAZ
  • O=P12O[Al](O1)O2
  • [Al+3].[O-]P([O-])([O-])=O
Properties
AlPO4
Molar mass 121.9529 g/mol
AppearanceWhite, crystalline powder
Density 2.566 g/cm3, solid
Melting point 1,800 °C (3,270 °F; 2,070 K)
Boiling point Decomposes
1.89×109 g/100 ml [1]
9.84×1021 [1]
Solubility Very slightly soluble in HCl and HNO3
1.546 [2]
Pharmacology
A02AB03 ( WHO )
Hazards
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-exclam.svg
Warning
H314, H315, H319, H332, H335
P260, P261, P264, P271, P280, P301+P330+P331, P302+P352, P303+P361+P353, P304+P312, P304+P340, P305+P351+P338, P310, P312, P321, P332+P313, P337+P313, P362, P363, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
0
0
Lethal dose or concentration (LD, LC):
4640 mg/kg (rat, oral)
> 4640 mg/kg (rabbit, dermal)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Aluminium phosphate is a chemical compound. In nature it occurs as the mineral berlinite. [3] Many synthetic forms of aluminium phosphate are known. They have framework structures similar to zeolites and some are used as catalysts, ion-exchangers or molecular sieves. [4] Commercial aluminium phosphate gel is available.

Contents

Berlinite

AlPO4 is isoelectronic with Si2O4, silicon dioxide. Berlinite looks like quartz and has a structure that is similar to quartz with silicon replaced by Al and P. The AlO4 and PO4 tetrahedra alternate. Like quartz, AlPO4 exhibits chirality [5] and piezoelectric properties. [6] When heated, crystalline AlPO4 (berlinite) converts to tridymite and cristobalite forms, and this mirrors the behaviour of silicon dioxide. [7]

Uses

Molecular sieves

There are many types of aluminium phosphate molecular sieves, generically known as "ALPOs". The first ones were reported in 1982. [8] They all share the same chemical composition of AlPO4 and have framework structures with microporous cavities. The frameworks are made up of alternating AlO4 and PO4 tetrahedra. The denser cavity-less crystalline berlinite, shares the same alternating AlO4 and PO4 tetrahedra. [7] The aluminophosphate framework structures vary one from another in the orientation of the AlO4 tetrahedra and PO4 tetrahedra to form different-sized cavities, and in this respect they are similar to the aluminosilicate zeolites, which differ in having electrically charged frameworks. A typical preparation of an aluminophosphate involves the hydrothermal reaction of phosphoric acid and aluminium in the form of hydroxide, an aluminium salt such as aluminium nitrate salt or alkoxide under controlled pH in the presence of organic amines. [9] These organic molecules act as templates (now termed structure directing agents, SDAs) to direct the growth of the porous framework. [10]

Other

Along with aluminium hydroxide, aluminium phosphate is one of the most common immunologic adjuvants (efficiency enhancers) in vaccinations. Aluminium adjuvant use is widespread due to their cheap price, long history of use, safety and efficiency with most antigens.

Similar to aluminium hydroxide, AlPO4 is used as an antacid. It neutralizes stomach acid (HCl) by forming AlCl3 with it. Up to 20% of aluminium from ingested antacid salts can be absorbed from the gastrointestinal tract – despite some unverified concerns about the neurological effects of aluminium, [11] aluminium phosphate and hydroxide salts are thought to be safe as antacids in normal use, even during pregnancy and breastfeeding. [12] [11]

Additional uses for AlPO4 in combination with or without other compounds are white colorants for pigments, corrosion inhibitors, cements and dental cements. Related compounds have also similar uses. For example, Al(H2PO4)3 is used in dental cements, metal coatings, glaze compositions and refractory binders; and Al(H2PO4)(HPO4) is used cement and refractory binders and adhesives. [13]

AlPO4·2H2O dihydrate is found as the minerals variscite and meta-variscite. [14] Aluminium phosphate dihydrate (variscite and meta-variscite) has a structure that can be regarded as an assembly of tetra- and octahedral units of phosphate anions, aluminium cations and water. Al3+ ions are 6-coordinate and PO43- ions are 4-coordinate. [3]

A synthetic hydrated form, AlPO4·1.5H2O is also known. [15]

See also

Related Research Articles

<span class="mw-page-title-main">Mineral</span> Crystalline chemical element or compound formed by geologic processes

In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.

Zeolite is a family of several microporous, crystalline aluminosilicate materials commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula Mn+
1/n
(AlO
2
)
(SiO
2
)
x
・yH
2
O
where Mn+
1/n
is either a metal ion or H+. These positive ions can be exchanged for others in a contacting electrolyte solution. H+
exchanged zeolites are particularly useful as solid acid catalysts.

An oxyanion, or oxoanion, is an ion with the generic formula A
x
Oz
y
. Oxyanions are formed by a large majority of the chemical elements. The formulae of simple oxyanions are determined by the octet rule. The corresponding oxyacid of an oxyanion is the compound H
z
A
x
O
y
. The structures of condensed oxyanions can be rationalized in terms of AOn polyhedral units with sharing of corners or edges between polyhedra. The oxyanions adenosine monophosphate (AMP), adenosine diphosphate (ADP) and adenosine triphosphate (ATP) are important in biology.

<span class="mw-page-title-main">Calcium sulfate</span> Laboratory and industrial chemical

Calcium sulfate (or calcium sulphate) is the inorganic compound with the formula CaSO4 and related hydrates. In the form of γ-anhydrite (the anhydrous form), it is used as a desiccant. One particular hydrate is better known as plaster of Paris, and another occurs naturally as the mineral gypsum. It has many uses in industry. All forms are white solids that are poorly soluble in water. Calcium sulfate causes permanent hardness in water.

<span class="mw-page-title-main">Calcium phosphate</span> Chemical compound

The term calcium phosphate refers to a family of materials and minerals containing calcium ions (Ca2+) together with inorganic phosphate anions. Some so-called calcium phosphates contain oxide and hydroxide as well. Calcium phosphates are white solids of nutritional value and are found in many living organisms, e.g., bone mineral and tooth enamel. In milk, it exists in a colloidal form in micelles bound to casein protein with magnesium, zinc, and citrate–collectively referred to as colloidal calcium phosphate (CCP). Various calcium phosphate minerals are used in the production of phosphoric acid and fertilizers. Overuse of certain forms of calcium phosphate can lead to nutrient-containing surface runoff and subsequent adverse effects upon receiving waters such as algal blooms and eutrophication (over-enrichment with nutrients and minerals).

<span class="mw-page-title-main">Brazilianite</span>

Brazilianite, whose name derives from its country of origin, Brazil, is a typically yellow-green phosphate mineral, most commonly found in phosphate-rich pegmatites.

<span class="mw-page-title-main">Sodium aluminate</span> Chemical compound

Sodium aluminate is an inorganic chemical that is used as an effective source of aluminium hydroxide for many industrial and technical applications. Pure sodium aluminate (anhydrous) is a white crystalline solid having a formula variously given as NaAlO2, NaAl(OH)4 (hydrated), Na2O·Al2O3, or Na2Al2O4. Commercial sodium aluminate is available as a solution or a solid.
Other related compounds, sometimes called sodium aluminate, prepared by reaction of Na2O and Al2O3 are Na5AlO4 which contains discrete AlO45− anions, Na7Al3O8 and Na17Al5O16 which contain complex polymeric anions, and NaAl11O17, once mistakenly believed to be β-alumina, a phase of aluminium oxide.

In chemistry, an aluminate is a compound containing an oxyanion of aluminium, such as sodium aluminate. In the naming of inorganic compounds, it is a suffix that indicates a polyatomic anion with a central aluminium atom.

<span class="mw-page-title-main">Monocalcium phosphate</span> Chemical compound

Monocalcium phosphate is an inorganic compound with the chemical formula Ca(H2PO4)2 ("AMCP" or "CMP-A" for anhydrous monocalcium phosphate). It is commonly found as the monohydrate ("MCP" or "MCP-M"), Ca(H2PO4)2·H2O. Both salts are colourless solids. They are used mainly as superphosphate fertilizers and are also popular leavening agents.

<span class="mw-page-title-main">Dicalcium phosphate</span> Chemical compound

Dicalcium phosphate is the calcium phosphate with the formula CaHPO4 and its dihydrate. The "di" prefix in the common name arises because the formation of the HPO42– anion involves the removal of two protons from phosphoric acid, H3PO4. It is also known as dibasic calcium phosphate or calcium monohydrogen phosphate. Dicalcium phosphate is used as a food additive, it is found in some toothpastes as a polishing agent and is a biomaterial.

Rigid unit modes (RUMs) represent a class of lattice vibrations or phonons that exist in network materials such as quartz, cristobalite or zirconium tungstate. Network materials can be described as three-dimensional networks of polyhedral groups of atoms such as SiO4 tetrahedra or TiO6 octahedra. A RUM is a lattice vibration in which the polyhedra are able to move, by translation and/or rotation, without distorting. RUMs in crystalline materials are the counterparts of floppy modes in glasses, as introduced by Jim Phillips and Mike Thorpe.

<span class="mw-page-title-main">Plumbogummite</span> Alunite supergroup, phosphate mineral

Plumbogummite is a rare secondary lead phosphate mineral, belonging to the alunite supergroup of minerals, crandallite subgroup. Some other members of this subgroup are:

<span class="mw-page-title-main">Germanate</span> Chemical compound

In chemistry, germanate is a compound containing an oxyanion of germanium. In the naming of inorganic compounds it is a suffix that indicates a polyatomic anion with a central germanium atom, for example potassium hexafluorogermanate, K2GeF6.

This list gives an overview of the classification of non-silicate minerals and includes mostly International Mineralogical Association (IMA) recognized minerals and its groupings. This list complements the List of minerals recognized by the International Mineralogical Association series of articles and List of minerals. Rocks, ores, mineral mixtures, not IMA approved minerals, not named minerals are mostly excluded. Mostly major groups only, or groupings used by New Dana Classification and Mindat.

Boron phosphate is an inorganic compound with the chemical formula BPO4. The simplest way of producing it is the reaction of phosphoric acid and boric acid. It is a white infusible solid that evaporates above 1450 °C.

Aluminium arsenate is an inorganic compound with the formula AlAsO4. It is most commonly found as an octahydrate. It is a colourless solid that is produced by the reaction between sodium arsenate and a soluble aluminium salt. Aluminium arsenate occurs naturally as the mineral mansfieldite. Anhydrous form is known as an extremely rare, fumarolic mineral alarsite A synthetic hydrate of aluminium arsenate is produced by hydrothermal method. with the formulation Al2O3·3As2O5·10H2O.

Tetracalcium phosphate is the compound Ca4(PO4)2O, (4CaO·P2O5). It is the most basic of the calcium phosphates, and has a Ca/P ratio of 2, making it the most phosphorus poor phosphate. It is found as the mineral hilgenstockite, which is formed in industrial phosphate rich slag (called "Thomas slag"). This slag was used as a fertiliser due to the higher solubility of tetracalcium phosphate relative to apatite minerals. Tetracalcium phosphate is a component in some calcium phosphate cements that have medical applications.

Vanadium phosphates are inorganic compounds with the formula VOxPO4 as well related hydrates with the formula VOxPO4(H2O)n. Some of these compounds are used commercially as catalysts for oxidation reactions.

The phosphate sulfates are mixed anion compounds containing both phosphate and sulfate ions. Related compounds include the arsenate sulfates, phosphate selenates, and arsenate selenates.

Actinium compounds are compounds containing the element actinium (Ac). Due to actinium's intense radioactivity, only a limited number of actinium compounds are known. These include: AcF3, AcCl3, AcBr3, AcOF, AcOCl, AcOBr, Ac2S3, Ac2O3, AcPO4 and Ac(NO3)3. Except for AcPO4, they are all similar to the corresponding lanthanum compounds. They all contain actinium in the oxidation state +3. In particular, the lattice constants of the analogous lanthanum and actinium compounds differ by only a few percent.

References

Citations

  1. 1 2 John Rumble (June 18, 2018). CRC Handbook of Chemistry and Physics (99 ed.). CRC Press. pp. 4–47. ISBN   978-1138561632.
  2. Pradyot Patnaik. Handbook of Inorganic Chemicals. McGraw-Hill, 2002, ISBN   0-07-049439-8
  3. 1 2 Corbridge, p. 207-208
  4. Corbridge, p. 310
  5. Tanaka, Y; et al. (2010). "Determination of structural chirality of berlinite and quartz using resonant x-ray diffraction with circularly polarized x-rays". Physical Review B. 81 (14): 144104. Bibcode:2010PhRvB..81n4104T. doi: 10.1103/PhysRevB.81.144104 . ISSN   1098-0121.
  6. Crystal growth of an α-quartz like piezoelectric material, berlinite, Motchany A. I., Chvanski P. P., Annales de Chimie Science des Materiaux properties, 2001, 26, 199
  7. 1 2 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 527. ISBN   978-0-08-037941-8.
  8. Wilson, ST; et al. (1982). "Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids". Journal of the American Chemical Society. 104 (4): 1146–1147. doi:10.1021/ja00368a062. ISSN   0002-7863.
  9. Kulprathipanja, S, ed. (2010-02-17). Zeolites in Industrial Separation and Catalysis. John Wiley & Sons. doi:10.1002/9783527629565. ISBN   9783527325054.
  10. Xu, R; et al. (2007). Chemistry of zeolites and related porous materials: synthesis and structure. John Wiley & Sons. p. 39. ISBN   9780470822333.
  11. 1 2 Schaefer, Christof; Peters, Paul W. J.; Miller, Richard K. (2015). Drugs during pregnancy and lactation: treatment options and risk assessment. C Schaefer, P Peters, RK Miller (3. ed.). Elsevier Science. p. 94. ISBN   9780124080782.
  12. S, Pratiksha; TM, Jamie (2018), "Antacids", StatPearls, StatPearls Publishing, PMID   30252305 , retrieved 2019-02-28
  13. Corbridge, p. 1025
  14. Roncal-Herrero, T; et al. (2009-12-02). "Precipitation of Iron and Aluminum Phosphates Directly from Aqueous Solution as a Function of Temperature from 50 to 200 °C". Crystal Growth & Design. 9 (12): 5197–5205. doi:10.1021/cg900654m. ISSN   1528-7483.
  15. Lagno, F; et al. (2005). "Synthesis of Hydrated Aluminium Phosphate, AlPO4·1.5H2O (AlPO4−H3), by Controlled Reactive Crystallization in Sulfate Media". Industrial & Engineering Chemistry Research. 44 (21): 8033–8038. doi:10.1021/ie0505559. ISSN   0888-5885.