Nitridophosphate

Last updated

A nitridophosphate is an inorganic compound that contains nitrogen bound to a phosphorus atom, considered as replacing oxygen in a phosphate.

Contents

Anions include NPN PN3 P3N6. Related compounds include the oxonitridophosphates [1] imidonitridophosphates, [2] nitridoborophosphates, [3] and nitridosilicatephosphates. [4] By changing the phosphorus, related materials include nitridovanadates and nitridorhenates. [5]

Nitridophosphate compounds include elements from the alkali metals, alkaline earths, first row transition metals, rare earth elements, and some other main group elements. [6]

Characteristics

Nitridophosphate compounds nearly always contain phosphorus in tetrahedral configuration. They can be characterised by the condensation index K which is the ratio of numbers of phosphorus tetrahedral centres to nitrogen vertices. As more nitrogen atoms are shared between phosphorus, condensation increases. The maximum is for P3N5 which no longer has any capacity for cations. For K of 1/2 three dimensional frameworks are produced. For 2/7 or 3/7 layered arrangements of tetrahedra are produced. For 1/3 chains or ring structures are prominent. 1/4 is for uncondensed PN4 compounds. Tow PN4 tetrahedra can also share an edge: P2N6, as the P-N bond is not very polarised, so there is less electrostatic repulsion. [6] Uncondensed compounds are sensitive to air and water but highly condensed compounds are water or acid stable. [6]

Nitridophosphate compounds are usually insulators and are transparent to light. [6]

Formation

Heating P3N5 with a metal nitride at gigapascal pressure and a temperatures of over 1000 °C forms nitridophosphates. P3N5 decomposes over 850°C at ambient pressure. However there are a few nitridophosphates that do no require such high temperatures to form. [7] [8]

Heating ammonia under pressure with red phosphorus, and metals, metal nitrides or metal azides is a method called ammonothermal synthesis. [9]

Use

Nitridophosphates are under investigation as luminescent materials, that can covert blue light into red. [8]

List

formulasystemspace groupunit cellvolumedensitycommentreference
HPN2tetragonalI42da = 4.6182 c = 7.0204 Z = 4 [10] [11]
HPN3 [12]
β-HP4N7monoclinicC2/ca = 12.873 b = 4.6587 c = 8.3222 β = 102.351° Z = 4487.553.037colourless [13]
γ-HP4N7monoclinicC2/ca=6.82983 b=7.24537 c=8.96504 β = 111.5557° Z = 4412.6043.572high pressure form > 12 GPa; P in trigonal bipyramid [14]
LiPN2 [12]
Li7PN4cubicP43na=9.3648 Z=8tetrahedra [12] [15]
β-Li10P4N10trigonala=8.71929 c=21.4656 Z=61413.32.35015colourless; tetrahedron of 4 tetrahedra [12]
α-Li10P4N10cubic>80°C [7]
Li5P2N5monoclinicC2/ca=14.770 b=17.850 c=4.860 β =93.11°layered, high pressure [16]
Li4PN3orthorhombicPccna=9.6597 b=11.8392 c=4.8674chains [17]
Li12P3N9monoclinicCca=12.094 b=7.649 c=9.711 β=90.53°ring of 3 tetrahedra [12] [17]
Li18P6N16monoclinicP1a=5.4263 b=7.5354 c=9.8584 α=108.481° β=99.288° γ=104.996° Z=1355.82.496tricyclic [18]
Li13P4N10Cl3cubicFm3ma=13.Z=8 Z=82704.272.2624colourless; [7]
Li13P4N10Br3cubicFm3ma=14.1096 Z=82809.02.8088colourless; [7]
LiP4N7orthorhombicP212121a=4.5846 b=8.009 c=13.252 Z=4485.83.130air stable; grey [19]
Li1.34P6N9.34(NH)1.66monoclinicP1a=4.691 b=7.024 c=12.736, α=87.73° β=80.28° γ=70.55° Z=2390.02.988air stable; grey [19]
BeP2N4cubicFd3a=7.1948 Z=8372.44bulk modulus 325 GPa [20]
BP3N6monoclinicP21/ca=5.027 b=4.5306 c=17.332 β=106.387° Z=4378.73.293 [21]
Li47B3P14N42trigonalP3c1a=19.3036 c=18.0200 [22]
NaPN2 [23]
NaP4N7 [19]
Na3P6N11 [19]
Mg2PN3orthorhombicCmc21a=9.723 b=5.6562 c=4.7083band gap 5.0 eV [12] [24]
MgP8N14orthorhombica=8.364 b=5.0214 c=23.196974.33.192 [25]
AlP6N11monoclinicCma=4.935 b=8.161 c=9.040 β=98.63°grey; layered; thermal expansion 16.0 ppm/K [26]
Ca2PN3orthorhombicCmcaa = 5.1914 b =10.3160 c = 11.289 Z = 8beige; chains [12]
CaP8N14 [25]
Sc5P12N23O3tetragonalI41/acda=12.3598 c=24.0151 Z=83668.63.500grey [27]
TiP4N8orthorhombicPmn21a=7.6065 b=4.6332 c=7.8601 Z=2227.013.403 [28]
TiP4N8orthorhombicPmn21a=22.9196 b=4.5880 c=8.0970 Z=6851.443.322 [28]
Ti5P12N24O2tetragonalI41/acda=a=12.1214 c=23.8458 Z=83503.63.713black; Ti3+ & Ti4+ [27]
MnP2N4hexagonalP6322a = 16.5543 c = 7.50581781.3 [27] [29]
FeP8N14orthorhombicCmcaa=8.2693 = 5.10147 c=23.0776air stable [30]
CoP8N14orthorhombicCmcaa=8.25183 b=5.10337 c=22.9675air stable [30]
NiP8N14orthorhombicCmcaa=8.23105 b=5.08252 c=22.8516air stable [30]
CuPN2tetragonalI42da = 4.5029 c = 7.6157154.42band gap 1.67 eV [23]
Zn2PN3orthorhombicCmc21a = 9.37847 b = 5.47696 c = 4.92396 Z = 4colourless [31] [32]
Zn8P12N24O2tetragonalI43ma=8.24239 c=8.24239 [33]
Zn8P12N24S2 [33]
Zn8P12N24Se2 [33]
Zn8P12N24Te2 [33]
Zn7P12N24Cl2sodalite structure [12]
GeP2N4orthorhombicPna21a=9.547 b=7.542 c=4.6941 Z=4dark grey [34]
Sr3P3N7monoclinicP2/ca=6.882 b=7.416 c=7.036 β=104.96° Z=2346.94.345white; decompose in moist air; band gap 4.4 eV [35]
Sr2SiP2N6orthorhombicC2221a = 6.0849 b = 8.8203 c = 10.2500 [36]
SrP8N14 [10]
SrP3N5NHmonoclinicP21/ca=5.01774 b=8.16912 c=12.70193 β=101.7848° Z=4 [2]
SrH4P6N12 [10]
Sr5Si2P6N16orthorhombicPbama = 9.9136 b = 17.5676 c = 8.3968 [36]
SrAl5P4N10O2F3tetragonalI4m2a=11.1685 c=7.8485 Z=2978.993.905 [37]
Sr3P5N10ClorthorhombicPnmaa=12.240 b=12.953 c=13.427 Z=8 [38]
Sr3P5N10BrorthorhombicPnmaa=12.297 b=12.990 c=13.458 Z=8 [38]
AgPN2 [39]
CdP2N4hexagonalP6322a = 16.7197 c = 7.64281850.3 [27] [29]
InP6N11grey; layered [26]
BaP2N4 [25]
Ba3P5N10ClorthorhombicPnma [38]
Ba3P5N10BrorthorhombicPnma [38]
BaSr2P6N12cubicPa3a=10.0639 Z=41019.34.343 [25]
La2P3N7monoclinicC2/c [35] [40]
Ce2P3N7monoclinicC2/c [35] [40]
Ce4Li3P18N35hexagonalP63/ma=13.9318 c=8.1355 [41]
Pr2P3N7monoclinicC2/ca = 7.8006 b = 10.2221 c = 7.7798 β = 111.299° Z = 4 [35] [40]
Nd2P3N7P421m [35] [40]
LiNdP4N8orthorhombicPnmaa=8.7305 b=7.8783 c=9.0881 [42]
Sm2P3N7P421m [35] [40]
Eu2P3N7P421m [35] [40]
Ho2P3N7P421ma = 7.3589 c = 4.9986 Z = 2 [35] [40]
Ho3[PN4]OtetragonalI4/mcma = 6.36112 c = 10.5571 Z = 4 [43]
Yb2P3N7P421m [35] [40]
Hf9−xP24N52−4xO4x (x≈1.84)I41/acda=12.4443 c=23.7674 Z=43680.6 [44]

Related Research Articles

<span class="mw-page-title-main">Achim Müller</span> German scientist

Achim Müller is a German chemist. He is Professor Emeritus at the Faculty of Chemistry, University of Bielefeld.

Within the area of organocatalysis, (thio)urea organocatalysis describes the use of ureas and thioureas to accelerate and stereochemically alter organic transformations. The effects arise through hydrogen-bonding interactions between the substrate and the (thio)urea. Unlike classical catalysts, these organocatalysts interact by non-covalent interactions, especially hydrogen bonding. The scope of these small-molecule H-bond donors termed (thio)urea organocatalysis covers both non-stereoselective and stereoselective applications.

<span class="mw-page-title-main">Ulrich Kortz</span> German chemist

Ulrich "Uli" Kortz is a German chemist and professor, working in the area of synthetic polyoxometalate chemistry.

<span class="mw-page-title-main">Triphosphorus pentanitride</span> Chemical compound

Triphosphorus pentanitride is an inorganic compound with the chemical formula P3N5. Containing only phosphorus and nitrogen, this material is classified as a binary nitride. While it has been investigated for various applications this has not led to any significant industrial uses. It is a white solid, although samples often appear colored owing to impurities.

<span class="mw-page-title-main">Phosphorus mononitride</span> Chemical compound

Phosphorus mononitride is an inorganic compound with the chemical formula PN. Containing only phosphorus and nitrogen, this material is classified as a binary nitride. From the Lewis structure perspective, it can be represented with a P-N triple bond with a lone pair on each atom. It is isoelectronic with N2, CO, P2, CS and SiO.

Corinna S. Schindler is a Professor of Chemistry at the University of Michigan. She develops catalytic reactions with environmentally benign metals such as iron, towards the synthesis of biologically active small molecules. For her research in the development of new catalysts, Schindler has been honored with several early-career researcher awards including the David and Lucile Packard Foundation Fellowship in 2016, the Alfred P. Sloan Fellowship in 2017, and being named a member of the C&EN Talented 12 in 2017. Schindler has served on the Editorial Board of Organic and Bimolecular Chemistry since 2018.

Richard Dronskowski is a German chemist and physicist. He is a full professor at the RWTH Aachen University.

<span class="mw-page-title-main">Helma Wennemers</span> German chemist

Helma B. Wennemers is a German organic chemist. She is a professor of organic chemistry at the Swiss Federal Institute of Technology in Zurich.

Paul Knochel is a French chemist and a member of the French Academy of Sciences.

Aluminium(I) nucleophiles are a group of inorganic and organometallic nucleophilic compounds containing at least one aluminium metal center in the +1 oxidation state with a lone pair of electrons strongly localized on the aluminium(I) center.

The nitridosilicates are chemical compounds that have anions with nitrogen bound to silicon. Counter cations that balance the electric charge are mostly electropositive metals from the alkali metals, alkaline earths or rare earth elements. Silicon and nitrogen have similar electronegativities, so the bond between them is covalent. Nitrogen atoms are arranged around a silicon atom in a tetrahedral arrangement.

The borosulfates are heteropoly anion compounds which have sulfate groups attached to boron atoms. Other possible terms are sulfatoborates or boron-sulfur oxides. The ratio of sulfate to borate reflects the degree of condensation. With [B(SO4)4]5- there is no condensation, each ion stands alone. In [B(SO4)3]3- the anions are linked into a chain, a chain of loops, or as [B2(SO4)6]6− in a cycle. Finally in [B(SO4)2] the sulfate and borate tetrahedra are all linked into a two or three-dimensional network. These arrangements of oxygen around boron and sulfur can have forms resembling silicates. The first borosulfate to be discovered was K5[B(SO4)4] in 2012. Over 75 unique compounds are known.

The nitridogermanates are chemical compounds containing germanium atoms bound to nitrogen. The simplest anion is GeN48−, but these are often condensed, with the elimination of nitrogen.

Arsenidosilicates are chemical compounds that contain anions with arsenic bonded to silicon. They are in the category of tetrelarsenides, pnictidosilicates, or tetrelpnictides. They can be classed as Zintl phases or intermetallics. They are analogous to the nitridosilicates, phosphidosilicates, arsenidogermanates, and arsenidostannates. They are distinct from arsenate silicates which have oxygen connected with arsenic and silicon, or arsenatosilicates with arsenate groups sharing oxygen with silicate.

<span class="mw-page-title-main">Stable phosphorus radicals</span>

Stable and persistent phosphorus radicals are phosphorus-centred radicals that are isolable and can exist for at least short periods of time. Radicals consisting of main group elements are often very reactive and undergo uncontrollable reactions, notably dimerization and polymerization. The common strategies for stabilising these phosphorus radicals usually include the delocalisation of the unpaired electron over a pi system or nearby electronegative atoms, and kinetic stabilisation with bulky ligands. Stable and persistent phosphorus radicals can be classified into three categories: neutral, cationic, and anionic radicals. Each of these classes involve various sub-classes, with neutral phosphorus radicals being the most extensively studied. Phosphorus exists as one isotope 31P (I = 1/2) with large hyperfine couplings relative to other spin active nuclei, making phosphorus radicals particularly attractive for spin-labelling experiments.

Heteroatomic multiple bonding between group 13 and group 15 elements are of great interest in synthetic chemistry due to their isoelectronicity with C-C multiple bonds. Nevertheless, the difference of electronegativity between group 13 and 15 leads to different character of bondings comparing to C-C multiple bonds. Because of the ineffective overlap between p𝝅 orbitals and the inherent lewis acidity/basicity of group 13/15 elements, the synthesis of compounds containing such multiple bonds is challenging and subject to oligomerization. The most common example of compounds with 13/15 group multiple bonds are those with B=N units. The boron-nitrogen-hydride compounds are candidates for hydrogen storage. In contrast, multiple bonding between aluminium and nitrogen Al=N, Gallium and nitrogen (Ga=N), boron and phosphorus (B=P), or boron and arsenic (B=As) are less common.

Homoleptic azido compounds are chemical compounds in which the only anion or ligand is the azide group, -N3. The breadth of homoleptic azide compounds spans nearly the entire periodic table. With rare exceptions azido compounds are highly shock sensitive and need to be handled with the upmost caution. Binary azide compounds can take on several different structures including discrete compounds, or one- two, and three-dimensional nets, leading some to dub them as "polyazides". Reactivity studies of azide compounds are relatively limited due to how sensitive they can be. The sensitivity of these compounds tends to be correlated with the amount of ionic or covalent character the azide-element bond has, with ionic character being far more stable than covalent character. Therefore, compounds such as silver or sodium azide – which have strong ionic character – tend to possess more synthetic utility than their covalent counterparts. A few other notable exceptions include polymeric networks which possess unique magnetic properties, group 13 azides which unlike most other azides decompose to nitride compounds (important materials for semiconductors), other limited uses as synthetic reagents for the transfer for azide groups, or interest in high energy density materials.

René Peters is a German chemist and since 2008 Professor of Organic Chemistry at the University of Stuttgart.

Polynitrides are solid chemical compounds with a large amount of nitrogen, beyond what would be expected from valencies. Some with N2 ions are termed pernitrides. Azides are not considered polynitrides, although pentazolates are.

<span class="mw-page-title-main">Aluminylene</span>

Aluminylenes are a sub-class of aluminium(I) compounds that feature singly-coordinated aluminium atoms with a lone pair of electrons. As aluminylenes exhibit two unoccupied orbitals, they are not strictly aluminium analogues of carbenes until stabilized by a Lewis base to form aluminium(I) nucleophiles. The lone pair and two empty orbitals on the aluminium allow for ambiphilic bonding where the aluminylene can act as both an electrophile and a nucleophile. Aluminylenes have also been reported under the names alumylenes and alanediyl.

References

  1. Pritzl, Reinhard M.; Prinz, Nina; Strobel, Philipp; Schmidt, Peter J.; Johrendt, Dirk; Schnick, Wolfgang (20 July 2023). "From Framework to Layers Driven by Pressure – The Monophyllo-Oxonitridophosphate β-MgSrP 3 N 5 O 2 and Comparison to its α-Polymorph". Chemistry – A European Journal. 29 (41). doi: 10.1002/chem.202301218 .
  2. 1 2 Vogel, Sebastian; Schnick, Wolfgang (2018-09-20). "SrP 3 N 5 NH: A Framework-Type Imidonitridophosphate Featuring Structure-Directing Hydrogen Bonds". Chemistry – A European Journal. 24 (53): 14275–14281. doi:10.1002/chem.201803210. ISSN   0947-6539. PMID   30004596. S2CID   51616212.
  3. Bertschler, Eva-Maria; Bräuniger, Thomas; Dietrich, Christian; Janek, Jürgen; Schnick, Wolfgang (18 April 2017). "Li 47 B 3 P 14 N 42 —A Lithium Nitridoborophosphate with [P 3 N 9 ] 12− , [P 4 N 10 ] 10− , and the Unprecedented [B 3 P 3 N 13 ] 15− Ion". Angewandte Chemie International Edition. 56 (17): 4806–4809. doi:10.1002/anie.201701084. PMID   28370871.
  4. Eisenburger, Lucien; Oeckler, Oliver; Schnick, Wolfgang (March 2021). "High-Pressure High-Temperature Synthesis of Mixed Nitridosilicatephosphates and Luminescence of AE SiP 3 N 7 :Eu 2+ ( AE =Sr, Ba)". Chemistry – A European Journal. 27 (13): 4461–4465. doi:10.1002/chem.202005495. ISSN   0947-6539. PMC   7986791 . PMID   33464635.
  5. Chaushli, Azad; Jacobs, Herbert; Weisser, Ulrike; Strähle, Joachim (September 2000). "Li5ReN4, ein Lithium–Nitridorhenat(VII) mit anti-Flußspat-Überstruktur". Zeitschrift für anorganische und allgemeine Chemie. 626 (9): 1909–1914. doi:10.1002/1521-3749(200009)626:9<1909::AID-ZAAC1909>3.0.CO;2-T.
  6. 1 2 3 4 Kloß, Simon D.; Schnick, Wolfgang (11 June 2019). "Nitridophosphates: A Success Story of Nitride Synthesis". Angewandte Chemie International Edition. 58 (24): 7933–7944. doi:10.1002/anie.201812791.
  7. 1 2 3 4 Bertschler, Eva-Maria; Dietrich, Christian; Leichtweiß, Thomas; Janek, Jürgen; Schnick, Wolfgang (2018-01-02). "Li + Ion Conductors with Adamantane-Type Nitridophosphate Anions β-Li 10 P 4 N 10 and Li 13 P 4 N 10 X 3 with X =Cl, Br". Chemistry – A European Journal. 24 (1): 196–205. doi:10.1002/chem.201704305. ISSN   0947-6539. PMID   29027753.
  8. 1 2 Wendl, Sebastian; Mardazad, Sara; Strobel, Philipp; Schmidt, Peter J.; Schnick, Wolfgang (5 October 2020). "HIP to be Square: Simplifying Nitridophosphate Synthesis in a Hot Isostatic Press". Angewandte Chemie. 132 (41): 18397–18400. Bibcode:2020AngCh.13218397W. doi:10.1002/ange.202008570. PMC   7590079 .
  9. Mallmann, Mathias; Wendl, Sebastian; Schnick, Wolfgang (11 February 2020). "Crystalline Nitridophosphates by Ammonothermal Synthesis". Chemistry – A European Journal. 26 (9): 2067–2072. doi:10.1002/chem.201905227. PMC   7027869 . PMID   31909508.
  10. 1 2 3 Wendl, Sebastian; Schnick, Wolfgang (2018-10-22). "SrH 4 P 6 N 12 and SrP 8 N 14 : Insights into the Condensation Mechanism of Nitridophosphates under High Pressure". Chemistry – A European Journal. 24 (59): 15889–15896. doi:10.1002/chem.201803125. ISSN   0947-6539. PMID   30136742. S2CID   52066954.
  11. Schnick, W.; Lücke, J. (April 1992). "Darstellung, Kristallstruktur und IR-spektroskopische Untersuchung von Phosphor(V)-nitrid-imid, HPN 2". Zeitschrift für anorganische und allgemeine Chemie. 610 (4): 121–126. doi:10.1002/zaac.19926100120. ISSN   0044-2313.
  12. 1 2 3 4 5 6 7 8 Schnick, Wolfgang; Schultz-Coulon, Verena (February 1993). "Ca 2 PN 3 : A New Phosphorus( V ) Nitride with One-Dimensional Infinite Chains of Corner-Sharing PN 4 Tetrahedra". Angewandte Chemie International Edition in English. 32 (2): 280–281. doi:10.1002/anie.199302801. ISSN   0570-0833.
  13. Baumann, Dominik; Schnick, Wolfgang (2014-08-04). "High-Pressure Polymorph of Phosphorus Nitride Imide HP 4 N 7 Representing a New Framework Topology". Inorganic Chemistry. 53 (15): 7977–7982. doi:10.1021/ic500767f. ISSN   0020-1669.
  14. Baumann, Dominik; Schnick, Wolfgang (2014-12-22). "Pentacoordinate Phosphorus in a High-Pressure Polymorph of Phosphorus Nitride Imide P 4 N 6 (NH)". Angewandte Chemie International Edition. 53 (52): 14490–14493. doi:10.1002/anie.201406086. ISSN   1433-7851. PMID   25124527.
  15. Schnick, Wolfgang; Luecke, Jan (July 1990). "Synthesis and crystal structure of lithium phosphorus nitride Li7PN4: The first compound containing isolated PN4-tetrahedra". Journal of Solid State Chemistry. 87 (1): 101–106. doi:10.1016/0022-4596(90)90070-E.
  16. Bertschler, Eva-Maria; Niklaus, Robin; Schnick, Wolfgang (2018-01-12). "Reversible Polymerization of Adamantane-type [P 4 N 10 ] 10− Anions to Honeycomb-type [P 2 N 5 ] 5− Layers under High-Pressure". Chemistry – A European Journal. 24 (3): 736–742. doi:10.1002/chem.201704975. ISSN   0947-6539. PMID   29136304.
  17. 1 2 Bertschler, Eva-Maria; Niklaus, Robin; Schnick, Wolfgang (2017-07-18). "Li 12 P 3 N 9 with Non-Condensed [P 3 N 9 ] 12− -Rings and its High-Pressure Polymorph Li 4 PN 3 with Infinite Chains of PN 4 -Tetrahedra". Chemistry – A European Journal. 23 (40): 9592–9599. doi:10.1002/chem.201700979. ISSN   0947-6539. PMID   28543928.
  18. Bertschler, Eva-Maria; Dietrich, Christian; Janek, Jürgen; Schnick, Wolfgang (2017-02-10). "Li 18 P 6 N 16 —A Lithium Nitridophosphate with Unprecedented Tricyclic [P 6 N 16 ] 18− Ions". Chemistry – A European Journal. 23 (9): 2185–2191. doi:10.1002/chem.201605316. ISSN   0947-6539. PMID   27977044.
  19. 1 2 3 4 Schneider, Stefanie; Klenk, Sebastian; Kloss, Simon D.; Schnick, Wolfgang (2024-01-11). "Please Mind the Gap: Highly Condensed P–N Networks in LiP 4 N 7 and Li 3− x P 6 N 11− x (NH) x". Chemistry – A European Journal. 30 (3): e202303251. doi: 10.1002/chem.202303251 . ISSN   0947-6539. PMID   37874966.
  20. Vogel, Sebastian; Bykov, Maxim; Bykova, Elena; Wendl, Sebastian; Kloß, Simon D.; Pakhomova, Anna; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Schnick, Wolfgang (2020-02-10). "Nitride Spinel: An Ultraincompressible High-Pressure Form of BeP 2 N 4". Angewandte Chemie. 132 (7): 2752–2756. Bibcode:2020AngCh.132.2752V. doi:10.1002/ange.201910998. ISSN   0044-8249.
  21. Vogel, Sebastian; Buda, Amalina T.; Schnick, Wolfgang (October 2018). "United in Nitride: The Highly Condensed Boron Phosphorus Nitride BP 3 N 6". Angewandte Chemie International Edition. 57 (40): 13202–13205. doi:10.1002/anie.201808111. ISSN   1433-7851. PMID   30088854. S2CID   51934156.
  22. Bertschler, Eva-Maria; Bräuniger, Thomas; Dietrich, Christian; Janek, Jürgen; Schnick, Wolfgang (2017-04-18). "Li 47 B 3 P 14 N 42 —A Lithium Nitridoborophosphate with [P 3 N 9 ] 12− , [P 4 N 10 ] 10− , and the Unprecedented [B 3 P 3 N 13 ] 15− Ion". Angewandte Chemie International Edition. 56 (17): 4806–4809. doi:10.1002/anie.201701084. ISSN   1433-7851. PMID   28370871.
  23. 1 2 Pucher, Florian J.; Hummel, Franziska; Schnick, Wolfgang (April 2015). "CuPN 2 : Synthesis, Crystal Structure, and Electronic Properties". European Journal of Inorganic Chemistry. 2015 (11): 1886–1891. doi:10.1002/ejic.201500009. ISSN   1434-1948.
  24. Mallmann, Mathias; Maak, Christian; Niklaus, Robin; Schnick, Wolfgang (2018-09-18). "Ammonothermal Synthesis, Optical Properties, and DFT Calculations of Mg 2 PN 3 and Zn 2 PN 3". Chemistry – A European Journal. 24 (52): 13963–13970. doi:10.1002/chem.201803293. ISSN   0947-6539. PMID   30044518. S2CID   51715277.
  25. 1 2 3 4 Wendl, Sebastian; Seidl, Lisa; Schüler, Patrick; Schnick, Wolfgang (2020-12-21). "Post-Synthetic Modification: Systematic Study on a Simple Access to Nitridophosphates". Angewandte Chemie International Edition. 59 (52): 23579–23582. doi:10.1002/anie.202011835. ISSN   1433-7851. PMC   7756662 . PMID   32941701.
  26. 1 2 Ambach, Sebastian J.; Pointner, Monika; Falkai, Sophie; Paulmann, Carsten; Oeckler, Oliver; Schnick, Wolfgang (2023-06-12). "Combining M N 6 Octahedra and PN 5 Trigonal Bipyramids in the Mica-like Nitridophosphates M P 6 N 11 ( M =Al, In)". Angewandte Chemie. 135 (24). Bibcode:2023AngCh.135E3580A. doi: 10.1002/ange.202303580 . ISSN   0044-8249.
  27. 1 2 3 4 Eisenburger, Lucien; Weippert, Valentin; Oeckler, Oliver; Schnick, Wolfgang (2021-10-13). "High-Pressure Synthesis of Sc 5 P 12 N 23 O 3 and Ti 5 P 12 N 24 O 2 by Activation of the Binary Nitrides ScN and TiN with NH 4 F". Chemistry – A European Journal. 27 (57): 14184–14188. doi:10.1002/chem.202101858. ISSN   0947-6539. PMC   8596507 . PMID   34407247.
  28. 1 2 Eisenburger, Lucien; Weippert, Valentin; Paulmann, Carsten; Johrendt, Dirk; Oeckler, Oliver; Schnick, Wolfgang (2022-05-02). "Discovery of Two Polymorphs of TiP 4 N 8 Synthesized from Binary Nitrides". Angewandte Chemie International Edition. 61 (19): e202202014. doi:10.1002/anie.202202014. ISSN   1433-7851. PMC   9310718 . PMID   35179291.
  29. 1 2 Pucher, Florian J.; Karau, Friedrich W.; Schmedt auf der Günne, Jörn; Schnick, Wolfgang (April 2016). "CdP 2 N 4 and MnP 2 N 4 – Ternary Transition-Metal Nitridophosphates". European Journal of Inorganic Chemistry. 2016 (10): 1497–1502. doi:10.1002/ejic.201600042. ISSN   1434-1948.
  30. 1 2 3 Kloß, Simon D.; Janka, Oliver; Block, Theresa; Pöttgen, Rainer; Glaum, Robert; Schnick, Wolfgang (2019-03-26). "Open-Shell 3d Transition Metal Nitridophosphates M II P 8 N 14 ( M II =Fe, Co, Ni) by High-Pressure Metathesis". Angewandte Chemie International Edition. 58 (14): 4685–4689. doi:10.1002/anie.201809146. ISSN   1433-7851. PMID   30320436. S2CID   52982994.
  31. Ambach, Sebastian J.; Pritzl, Reinhard M.; Bhat, Shrikant; Farla, Robert; Schnick, Wolfgang (2024-02-07). "Nitride Synthesis under High-Pressure, High-Temperature Conditions: Unprecedented In Situ Insight into the Reaction". Inorganic Chemistry. 63 (7): 3535–3543. doi:10.1021/acs.inorgchem.3c04433. ISSN   0020-1669. PMID   38324917. S2CID   267545137.
  32. Sedlmaier, Stefan J.; Eberspächer, Moritz; Schnick, Wolfgang (March 2011). "High-Pressure Synthesis, Crystal Structure, and Characterization of Zn 2 PN 3 – A New catena -Polynitridophosphate". Zeitschrift für anorganische und allgemeine Chemie. 637 (3–4): 362–367. doi:10.1002/zaac.201000403. ISSN   0044-2313.
  33. 1 2 3 4 Karau, Friedrich; Oeckler, Oliver; Schäfers, Franz; Niewa, Rainer; Schnick, Wolfgang (August 2007). "Zn 8 [P 12 N 24 ]O 2 – ein Nitridophosphat-oxid mit Sodalith-Struktur". Zeitschrift für anorganische und allgemeine Chemie. 633 (9): 1333–1338. doi:10.1002/zaac.200600322. ISSN   0044-2313.
  34. Ambach, Sebastian J.; Somers, Cody; de Boer, Tristan; Eisenburger, Lucien; Moewes, Alexander; Schnick, Wolfgang (2023-01-16). "Structural Influence of Lone Pairs in GeP 2 N 4 , a Germanium(II) Nitridophosphate". Angewandte Chemie International Edition. 62 (3): e202215393. doi:10.1002/anie.202215393. ISSN   1433-7851. PMC   10107938 . PMID   36350660.
  35. 1 2 3 4 5 6 7 8 9 Mallmann, Mathias; Wendl, Sebastian; Strobel, Philipp; Schmidt, Peter J.; Schnick, Wolfgang (2020-05-15). "Sr 3 P 3 N 7 : Complementary Approach by Ammonothermal and High-Pressure Syntheses". Chemistry – A European Journal. 26 (28): 6257–6263. doi:10.1002/chem.202000297. ISSN   0947-6539. PMC   7318702 . PMID   32030819.
  36. 1 2 Dialer, Marwin; Pointner, Monika M.; Wandelt, Sophia L.; Strobel, Philipp; Schmidt, Peter J.; Bayarjargal, Lkhamsuren; Winkler, Björn; Schnick, Wolfgang (2023-12-03). "Order and Disorder in Mixed (Si, P)–N Networks Sr 2 SiP 2 N 6 :Eu 2+ and Sr 5 Si 2 P 6 N 16 :Eu 2+". Advanced Optical Materials. doi: 10.1002/adom.202302668 . ISSN   2195-1071.
  37. Pointner, Monika M.; Oeckler, Oliver; Schnick, Wolfgang (2023-09-26). "Tetra-Face-Capped Octahedra in a Tetrahedra Network – Structure Determination and Scanning Transmission Electron Microscopy of SrAl 5 P 4 N 10 O 2 F 3". Chemistry – A European Journal. 29 (54): e202301960. doi: 10.1002/chem.202301960 . ISSN   0947-6539. PMID   37410334.
  38. 1 2 3 4 Wendl, Sebastian; Zipkat, Mirjam; Strobel, Philipp; Schmidt, Peter J.; Schnick, Wolfgang (2021-02-23). "Synthesis of Nitride Zeolites in a Hot Isostatic Press". Angewandte Chemie International Edition. 60 (9): 4470–4473. doi:10.1002/anie.202012722. ISSN   1433-7851. PMC   7985876 . PMID   33201554.
  39. "Электронное строение, химическая связь и некоторые физико-химические свойства кристаллов A1PN2(A1=H, Li, Na, Ag) - Пермина, Виктория Сергеевна - 02.00.04 - Физическая химия". freereferats.ru. Retrieved 2024-02-22.
  40. 1 2 3 4 5 6 7 8 Kloß, Simon D.; Weidmann, Niels; Niklaus, Robin; Schnick, Wolfgang (2016-09-19). "High-Pressure Synthesis of Melilite-type Rare-Earth Nitridophosphates RE 2 P 3 N 7 and a Ba 2 Cu[Si 2 O 7 ]-type Polymorph". Inorganic Chemistry. 55 (18): 9400–9409. doi:10.1021/acs.inorgchem.6b01611. ISSN   0020-1669. PMID   27579899.
  41. Kloß, Simon D.; Neudert, Lukas; Döblinger, Markus; Nentwig, Markus; Oeckler, Oliver; Schnick, Wolfgang (2017-09-13). "Puzzling Intergrowth in Cerium Nitridophosphate Unraveled by Joint Venture of Aberration-Corrected Scanning Transmission Electron Microscopy and Synchrotron Diffraction". Journal of the American Chemical Society. 139 (36): 12724–12735. doi:10.1021/jacs.7b07075. ISSN   0002-7863. PMID   28823161.
  42. Kloß, Simon David; Schnick, Wolfgang (2015-09-14). "Rare-Earth-Metal Nitridophosphates through High-Pressure Metathesis". Angewandte Chemie International Edition. 54 (38): 11250–11253. doi:10.1002/anie.201504844. ISSN   1433-7851. PMID   26352033.
  43. Kloß, Simon D.; Weidmann, Niels; Schnick, Wolfgang (2017-04-03). "Antiperovskite Nitridophosphate Oxide Ho 3 [PN 4 ]O by High-Pressure Metathesis". European Journal of Inorganic Chemistry. 2017 (13): 1930–1937. doi:10.1002/ejic.201601425. ISSN   1434-1948.
  44. Kloß, Simon D.; Wandelt, Sophia; Weis, Andreas; Schnick, Wolfgang (2018-03-12). "Accessing Tetravalent Transition-Metal Nitridophosphates through High-Pressure Metathesis". Angewandte Chemie International Edition. 57 (12): 3192–3195. doi:10.1002/anie.201712006. ISSN   1433-7851. PMID   29377432.