Aluminium nitride

Last updated
Aluminium nitride
Aluminium Nitride powder Aluminium Nitride.jpg
Aluminium Nitride powder
Wurtzite polyhedra.png
Names
IUPAC name
Aluminium nitride
Other names
AlN
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.041.931 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 246-140-8
13611
PubChem CID
RTECS number
  • BD1055000
UNII
  • InChI=1S/Al.N Yes check.svgY
    Key: PIGFYZPCRLYGLF-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/Al.N/rAlN/c1-2
    Key: PIGFYZPCRLYGLF-PXKYIXAJAH
  • [AlH2-]1[N+]47[AlH-]2[N+][AlH-]3[N+]8([AlH2-][NH+]([AlH2-]4)[AlH2-]6)[AlH-]4[N+][AlH-]5[N+]6([AlH2-]6)[Al-]78[N+]78[AlH-]([NH+]69)[NH+]5[AlH2-][NH+]4[AlH-]7[NH+]3[AlH2-][NH+]2[AlH-]8[NH+]1[AlH2-]9
  • [AlH2-]1[NH+]([AlH2-]6)[AlH2-][NH+]7[AlH-]2[N+][Al-]3([N+][AlH-]9[N+]5)[N+]18[Al-]45[N+][AlH-]5[NH+]6[Al-]78[N+]78[AlH2-][NH+]5[AlH2-][N+]4([AlH2-][NH+]9[AlH2-]4)[AlH-]7[N+]34[AlH2-][NH+]2[AlH2-]8
Properties
AlN
Molar mass 40.989 g/mol [1]
Appearancewhite to pale-yellow solid
Density 3.255 g/cm3 [1]
Melting point 2,500 °C (4,530 °F; 2,770 K) [2]
hydrolyses (powder), insoluble (monocrystalline)
Solubility insoluble, subject of hydrolysis in water solutions of bases and acids [3]
Band gap 6.015 eV [4] [5] (300 K, direct)
Electron mobility ~300 cm2/(V·s)
Thermal conductivity 321 W/(m·K) [6]
2.048 [7] (300 k, λ = 633 nm)
Structure [8]
Wurtzite (Atmospheric)
C6v4-P63mc, No. 186, hP4
a = 0.31117 nm [9] , c = 0.49788 nm
2
Tetrahedral
Structure [10]
Rocksalt (High-pressure)
, No. 225, cF8
a = 0.3938 nm
4
Thermochemistry [11]
30.1 J/(mol·K)
Std molar
entropy
(S298)
20.2 J/(mol·K)
−318.0 kJ/mol
−287.0 kJ/mol
Hazards
GHS labelling:
GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
Warning
H315, H319, H335, H373, H411
P260, P261, P264, P271, P280, P301+P330+P331, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P310, P312, P321, P332+P313, P337+P313, P362, P363, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
0
0
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Aluminium nitride (Al N) is a solid nitride of aluminium, which was first synthesized in 1862 by F. Briegleb and A. Geuther. [12] [13]

Contents

AlN is a wide-bandgap semiconductor composed of aluminium and nitrogen. It crystallizes predominantly in the wurtzite structure and exhibits a direct band gap of approximately 6 eV at room temperature The exceptionally wide bandgap enables applications in deep-ultraviolet optoelectronics, while the material's thermal conductivity 321 W/(m·K) [6] , and strong polarization effects make it an important buffer and template material for III-nitride quantum heterostructures used in high-power and high-frequency electronic devices. [14] [15]

Structures and physical properties

AlN exists primarily in the hexagonal wurtzite crystal structure, [16] which plays a central role in determining its physical properties. In this structure, aluminium and nitrogen atoms alternate along the crystallographic c-axis, with each atom tetrahedrally coordinated to four atoms of the opposite species adopting a sp3-like bonding and an in-plane constant of 3.11Å. [17]

In addition to the thermodynamically stable wurtzite phase, AlN can also form a metastable cubic zincblende phase, typically realized in thin films grown under non-equilibrium conditions. It is predicted that the cubic phase of AlN (zb-AlN) can exhibit superconductivity at high pressures. [18] At sufficiently high pressures, a phase transition to a rocksalt structure has been reported. [19] The lattice parameters and the excess of the ground state energies for different AlN crystal structures at zero pressure are listed in the table below: [20] [21] [22]

Lattice parameters and the excess of the ground state energies at zero pressure
AlN structure
WurtziteZinc blendeRocksalt
a (Å)3.12
(3.11)
4.39
(4.37)
4.06
(4.06)
c/a1.6028
Energy (meV/atom)0.023204
The metastable cubic structure of AlN crystal AlN cubic.png
The metastable cubic structure of AlN crystal

In the pure (undoped) state, AlN exhibits very low electrical conductivity, typically in the range of 10−11–10−13 Ω−1⋅cm−1, which can increase to 10−5–10−6 Ω−1⋅cm−1 upon intentional doping. [23] Electrical breakdown occurs at high electric fields on the order of 1×105 V/mm (dielectric strength), reflecting the material's wide band gap and strong chemical bonding. [23]

One of the most distinctive intrinsic properties of wurtzite AlN is its spontaneous polarization, which arises from the non-centrosymmetric nature of the crystal structure and the strong ionic character of the Al-N bonds. The large difference in electronegativity between aluminium and nitrogen results in a substantial polarization along the c-axis. [24]

Compared with other III-nitride materials, AlN has a larger spontaneous polarization due to the higher nonideality of its crystal structure (Psp: AlN 0.081 C/m2 > InN 0.032 C/m2 > GaN 0.029 C/m2). [25]

In addition, its piezoelectric nature gives rise to significant strain-induced polarization charges under lattice mismatch or external stress. These polarization effects can induce high densities of free carriers at III-nitride heterostructure interfaces without the need for intentional doping. [24] In AlN-based heterostructures, these polarization-induced charges can give rise to a two-dimensional electron gas (2DEG) confined at the interface, [24] enabling high carrier densities without intentional doping. Such polarization-induced 2DEGs are widely exploited in III-nitride electronic devices, particularly high-electron-mobility transistors. [26]

Critical spontaneous and piezoelectric polarization constants for AlN are listed in the table below: [25] [27]

Critical spontaneous and piezoelectric polarization constants for AlN
e31

(C/m2)

e33

(C/m2)

c13

(GPa)

c33

(GPa)

a0

(Å)

c0

(Å)

AlN-0.601.461083733.1124.982

Owing to the absence of inversion symmetry along the polar direction, AlN thin films can be grown with either metal-polar or nitrogen-polar orientation, with bulk and surface properties that depend sensitively on the chosen polarity. [28] Metal-polar (Al-polar) AlN refers to films grown with the surface terminated by aluminium atoms along the [0001] direction, whereas nitrogen-polar (N-polar) AlN corresponds to films terminated by nitrogen atoms along the opposite [000-1] direction. [29]

Crystal structures of metal-polar and nitrogen-polar wurtzite AlN Wurtzite aluminium nitride crystal structure.png
Crystal structures of metal-polar and nitrogen-polar wurtzite AlN

Differences in surface termination lead to distinct surface bonding configurations and chemical reactivities, which can strongly influence epitaxial growth behavior and interface properties. As a result, the roles of polarization and polarity in determining the physical and electronic behavior of AlN remain an active area of research. [30]

AlN has high thermal conductivity. High-quality MOCVD-grown AlN single crystal has an intrinsic thermal conductivity of 321 W/(m·K), consistent with a first-principles calculations. [6] For an electrically insulating ceramic, it is 70–210 W/(m·K) for polycrystalline material, and as high as 285 W/(m·K) for single crystals. [23]

AlN is one of the few materials that have both a wide and direct band gap (almost twice that of SiC and GaN) and large thermal conductivity. [31] This is due to its small atomic mass, strong interatomic bonds, and simple crystal structure. [32] This property makes AlN attractive for applications in high speed and high power communication networks. Many devices handle and manipulate large amounts of energy in small volumes and at high speeds. Hence, due to its electrically insulating nature and high thermal conductivity, AlN is a potential material for high-power power electronics. Among group III-nitride materials, AlN has a higher thermal conductivity compared to gallium nitride (GaN). Therefore, AlN is more advantageous than GaN in terms of heat dissipation in many power and radio frequency electronic devices.

Thermal expansion is another critical property for high temperature applications. The calculated thermal expansion coefficients of AlN at 300 K are 4.2×10−6 K−1along a-axis and 5.3×10−6 K−1 along c-axis. [33]

Stability and chemical properties

Aluminium nitride is stable at high temperatures in inert atmospheres and melts at about 2,200 °C (2,470 K; 3,990 °F). In a vacuum, AlN decomposes at ~1,800 °C (2,070 K; 3,270 °F). In the air, surface oxidation occurs above 700 °C (973 K; 1,292 °F), and even at room temperature, surface oxide layers of 5–10 nm thickness have been detected. This oxide layer protects the material up to 1,370 °C (1,640 K; 2,500 °F). Above this temperature bulk oxidation occurs. Aluminium nitride is stable in hydrogen and carbon-dioxide atmospheres up to 980 °C (1,250 K; 1,800 °F). [34]

The material dissolves slowly in mineral acids through grain-boundary attack and in strong alkalies through attack on the aluminium-nitride grains. The material hydrolyzes slowly in water. Aluminium nitride is resistant to attack from most molten salts, including chlorides and cryolite. [35]

Aluminium nitride can be patterned with a Cl2-based reactive ion etch. [36] [37]

Synthesis

Bulk substrate

Bulk aluminum nitride (AlN) single crystals are primarily produced to serve as native substrates for III-nitride electronic and optoelectronic devices. Due to the extremely high melting point of AlN (above 2800 °C) and its thermal decomposition before melting under ambient pressure (ambient pressure), conventional melt growth techniques are not applicable. As a result, bulk AlN crystals are fabricated almost exclusively by high-temperature vapor-phase growth methods, with Physical vapor deposition (PVD), also referred to as sublimation growth, [38] being the most established technique, which can be written as:

(AlN)solid → Al vapour + 1/2 N 2 → (AlN)solid [39]

The solid AlN source material used for sublimation growth is typically prepared by carbothermal reduction–nitridation of alumina for producing AlN powders:

Al2O3 + 3C + N2 → 2AlN + 3CO [40]

Metal-organic vapour phase epitaxy

Metalorganic vapour-phase epitaxy is widely used for the epitaxial growth of aluminum nitride (AlN). Early studies focused on thin AlN buffer layers to enable high-quality GaN growth on lattice-mismatched substrates such as sapphire. [41] Aluminum-containing metal–organic precursors, most commonly trimethylaluminum (TMA, Al(CH3)3) and triethylaluminum (TEA, Al2(C2H5)6) are transported into a heated reaction chamber together with ammonia (NH3) as the nitrogen source, typically using hydrogen as a carrier gas. At elevated substrate temperatures (≈1000–1200 °C), [42] these precursors decompose and react near the substrate surface to form crystalline AlN films. [43] The reactions between TMA and NH3 include two steps:

1. the formation of the solid addition compound:

Al2(CH3)6 (g)+2NH3(g)→2Al(CH3)3 :NH3(s)

2. the pyrolysis of this addition compound on the heated substrate:

Al(CH3)3 :NH3(s) → (AlN)(s)+3CH4(g)

Molecular beam epitaxy

Molecular beam epitaxy (MBE), particularly plasma-assisted MBE (PAMBE), is another technique used for the growth of aluminum nitride thin films, [44] offering precise control over growth conditions and interface abruptness. In MBE, elemental aluminum is supplied from an effusion cell (Knudsen cell), while active nitrogen species are generated using a radio-frequency nitrogen plasma source. Growth is typically carried out under ultra-high vacuum conditions.

High-quality single-crystalline AlN generally requires growth temperatures above approximately 700 °C to ensure sufficient surface diffusion of aluminum adatoms. At lower temperatures, aluminum adatom mobility is reduced, leading to polycrystalline or partially amorphous AlN films. Despite the reduced crystallinity, low-temperature AlN grown by MBE has found applications as an in-situ surface passivation layer in III-nitride high-electron-mobility transistor (HEMTs). The fundamental surface reaction in PAMBE-grown AlN can be expressed as the direct combination of aluminum atoms with activated nitrogen species:

Al(g)+N* (g) → (AlN)(s) [45]

Nanopowders

Aluminum nitride (AlN) powders is synthesized by the carbothermal reduction of aluminium oxide in the presence of gaseous nitrogen or ammonia or by direct nitridation of aluminium. The use of sintering aids, such as Y2O3 or CaO, and hot pressing is required to produce a dense technical-grade material. [46]

Applications

Epitaxially grown thin film crystalline AlN is used for surface acoustic wave sensors (SAWs) deposited on silicon wafers because of AlN's piezoelectric properties. Recent advancements in material science have permitted the deposition of piezoelectric AlN films on polymeric substrates, thus enabling the development of flexible SAW devices. [47] One application is an RF filter, widely used in mobile phones, [48] which is called a thin-film bulk acoustic resonator (FBAR). This is a MEMS device that uses aluminium nitride sandwiched between two metal layers. [49]

AlN is also used to build piezoelectric micromachined ultrasonic transducers, which emit and receive ultrasound and which can be used for in-air rangefinding over distances of up to a meter. [50] [51]

Metallization methods are available to allow AlN to be used in electronics applications similar to those of alumina and beryllium oxide. AlN nanotubes as inorganic quasi-one-dimensional nanotubes, which are isoelectronic with carbon nanotubes, have been suggested as chemical sensors for toxic gases. [52] [53]

Currently there is much research into developing light-emitting diodes to operate in the ultraviolet using gallium nitride based semiconductors and, using the alloy aluminium gallium nitride, wavelengths as short as 250 nm have been achieved. In 2006, an inefficient AlN LED emission at 210 nm was reported. [54]

AlN-based high electron mobility transistors (HEMTs) have attracted a high level of attention due to AlN's superior properties, such as better thermal management, reduced buffer leakage, and excellent integration for all nitride electronics. AlN buffer layer is a critical building block for AlN-based HEMTs, and it has been grown by using metalorganic vapour-phase epitaxy (MOVPE) or molecular beam epitaxy (MBE) on different substrates. Common substrates used for the epitaxial growth of AlN thin films include c-plane sapphire and silicon carbide. Bulk AlN substrates that would permit homoepitaxial growth are of limited availability. Under ambient pressure AlN decomposes at temperatures below its melting point. As a result, conventional melt-boule techniques are not suitable for producing bulk AlN. [55] Building on top of AlN buffer, n-channel devices with 2D electron gas (2DEG) and p-channel devices with 2D hole gas (2DHG) have been demonstrated. The combination of high-density 2DEG and 2DHG on the same semiconductor platform makes it a potential candidate for CMOS devices.

Aluminum nitride ceramics facilitate polymerization reactions, enhancing efficiency and consistency in creating plastics and resins. [56] They are also used in microwave applications as a substrate and heat sink. [57] More researchers are examining the production of light-emitting diodes(LEDs) to operate in the ultraviolet region using aluminium gallium nitride(AlGaN) based semiconductors. [58]

Among the applications of AlN are

See also

References

  1. 1 2 Haynes, p. 4.45.
  2. Haynes, p. 12.80.
  3. Fukumoto, S.; Hookabe, T.; Tsubakino, H. (2010). "Hydrolysis behavior of aluminum nitride in various solutions". J. Mat. Science. 35 (11): 2743–2748. doi:10.1023/A:1004718329003. S2CID   91552821.
  4. Haynes, p. 12.85.
  5. Feneberg, M.; Leute, R. A. R.; Neuschl, B.; Thonke, K.; Bickermann, M. (2010). Phys. Rev. B. 82 (7) 075208. Bibcode:2010PhRvB..82g5208F. doi:10.1103/physrevb.82.075208.{{cite journal}}: CS1 maint: untitled periodical (link)
  6. 1 2 3 Cheng, Zhe; Koh, Yee Rui; Mamun, Abdullah; Shi, Jingjing; Bai, Tingyu; Huynh, Kenny; Yates, Luke; Liu, Zeyu; Li, Ruiyang; Lee, Eungkyu; Liao, Michael E.; Wang, Yekan; Yu, Hsuan Ming; Kushimoto, Maki; Luo, Tengfei; Goorsky, Mark S.; Hopkins, Patrick E.; Amano, Hiroshi; Khan, Asif; Graham, Samuel (2020). "Experimental observation of high intrinsic thermal conductivity of AlN". Physical Review Materials. 4 (4) 044602. arXiv: 1911.01595 . Bibcode:2020PhRvM...4d4602C. doi:10.1103/PhysRevMaterials.4.044602. S2CID   207780348 . Retrieved 2020-04-03.
  7. Beliaev, Leonid Yu.; Shkondin, Evgeniy; Lavrinenko, Andrei V.; Takayama, Osamu (2021). "Thickness-dependent optical properties of aluminum nitride films for mid-infrared wavelengths". Journal of Vacuum Science & Technology A. 39 (4) 043408. Bibcode:2021JVSTA..39d3408B. doi:10.1116/6.0000884.
  8. Vandamme, Nobuko S.; Richard, Sarah M.; Winzer, Stephen R. (1989). "Liquid-Phase Sintering of Aluminum Nitride by Europium Oxide Additives". Journal of the American Ceramic Society. 72 (8): 1409–1414. doi:10.1111/j.1151-2916.1989.tb07662.x.
  9. Vurgaftman, I.; Meyer, J. R. (2003). "Band parameters for nitrogen-containing semiconductors". Journal of Applied Physics. 94 (6): 3675–3696. Bibcode:2003JAP....94.3675V. doi:10.1063/1.1600519.
  10. Christensen, N. E.; Gorczyca, I. (1993). "Calculated structural phase transitions of aluminum nitride under pressure". Physical Review B. 47 (8): 4307–4314. Bibcode:1993PhRvB..47.4307C. doi:10.1103/PhysRevB.47.4307. PMID   10006577.
  11. Haynes, p. 5.4.
  12. Fesenko I. P.; Prokopiv M. M.; Chasnyk V. I.; et al. (2015). Aluminium nitride based functional materials, prepared from nano/micron-sized powders via hot pressing/pressureless sintering. EPC ALCON. p. 11. ISBN   978-966-8449-53-6.
  13. Briegleb, F.; Geuther, A. (1862). "Ueber das Stickstoffmagnesium und die Affinitäten des Stickgases zu Metallen". Justus Liebigs Annalen der Chemie. 123 (2): 228–241. doi:10.1002/jlac.18621230212.
  14. Cheng, Zhe; Koh, Yee Rui; Mamun, Abdullah; Shi, Jingjing; Bai, Tingyu; Huynh, Kenny; Yates, Luke; Liu, Zeyu; Li, Ruiyang; Lee, Eungkyu; Liao, Michael E.; Wang, Yekan; Yu, Hsuan Ming; Kushimoto, Maki; Luo, Tengfei; Goorsky, Mark S.; Hopkins, Patrick E.; Amano, Hiroshi; Khan, Asif; Graham, Samuel (2020-04-23). "Experimental observation of high intrinsic thermal conductivity of AlN". Physical Review Materials. 4 (4) 044602. American Physical Society. arXiv: 1911.01595 . Bibcode:2020PhRvM...4d4602C. doi:10.1103/PhysRevMaterials.4.044602.
  15. Bondokov, Robert T.; Mueller, Stephan G.; Morgan, Kenneth E.; Slack, Glen A.; Schujman, Sandra; Wood, Mark C.; Smart, Joseph A.; Schowalter, Leo J. (2008-06-17). "Large-area AlN substrates for electronic applications: An industrial perspective". Journal of Crystal Growth. 310 (17). Elsevier: 4020–4026. Bibcode:2008JCrGr.310.4020B. doi:10.1016/j.jcrysgro.2008.06.032.
  16. Schulz, Heinz; Thiemann, K. H. (1977). "Crystal structure refinement of AlN and GaN". Solid State Communications. 23. Pergamon Press: 815–819.
  17. Tsipas, P.; Kassavetis, S.; Tsoutsou, D.; Xenogiannopoulou, E.; Golias, E.; Giamini, S. A.; Grazianetti, C.; Chiappe, D.; Molle, A.; Fanciulli, M.; Dimoulas, A. (2013-12-17). "Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111)". Applied Physics Letters. 103 (25). AIP Publishing: 251605. doi:10.1063/1.4851239.
  18. Dancy, G. Selva; Sheeba, V. Benaline; Louis, C. Nirmala; Amalraj, A. (2015-09-30). "Superconductivity in Group III-V Semiconductor AlN Under High Pressure". Orbital - the Electronic Journal of Chemistry. 7 (3). Instituto de Quimica - Univ. Federal do Mato Grosso do Sul. doi: 10.17807/orbital.v7i3.628 . ISSN   1984-6428.
  19. Siegel, A.; Parlinski, K.; Wdowik, U. D. (2006-09-28). "Ab initio calculation of structural phase transitions in AlN crystal". Physical Review B. 74 (10) 104116. American Physical Society. doi:10.1103/PhysRevB.74.104116.
  20. Ching, W. Y.; Harmon, B. N. (1986-10-15). "Electronic structure of AlN". Physical Review B. 34 (8). American Physical Society: 5305–5314. doi:10.1103/PhysRevB.34.5305.
  21. Litimein, F.; Bouhafs, B.; Dridi, Z.; Ruterana, P. (2002-08-22). "The electronic structure of wurtzite and zincblende AlN: an ab initio comparative study". New Journal of Physics. 4. IOP Publishing: 64. doi: 10.1088/1367-2630/4/1/364 .
  22. Christensen, N. E.; Gorczyca, I. (1994-08-15). "Optical and structural properties of III-V nitrides under pressure". Physical Review B. 50 (7). American Physical Society: 4397–4415. doi:10.1103/PhysRevB.50.4397.
  23. 1 2 3 "AlN – Aluminium Nitride". Ioffe Database. Sankt-Peterburg: FTI im. A. F. Ioffe, RAN. Retrieved 2014-01-01.
  24. 1 2 3 Ambacher, O. (2000). "Polarization induced effects in AlGaN/GaN heterostructures". Acta Physica Polonica A. 98 (3): 195–214.
  25. 1 2 Ambacher, O (1998-10-21). "Growth and applications of Group III-nitrides" . Journal of Physics D: Applied Physics. 31 (20): 2653–2710. doi:10.1088/0022-3727/31/20/001. ISSN   0022-3727. S2CID   250782290.
  26. Vetury, Ramakrishna; Zhang, Naiqian Q.; Keller, Stacia; Mishra, Umesh K. (2001-03-31). "The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs". IEEE Transactions on Electron Devices. 48 (3). IEEE: 560–566. doi:10.1109/16.906451.
  27. Ambacher, O.; Foutz, B.; Smart, J.; Shealy, J. R.; Weimann, N. G.; Chu, K.; Murphy, M.; Sierakowski, A. J.; Schaff, W. J.; Eastman, L. F.; Dimitrov, R.; Mitchell, A.; Stutzmann, M. (2000-01-01). "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures". Journal of Applied Physics. 87 (1): 334–344. Bibcode:2000JAP....87..334A. doi: 10.1063/1.371866 . ISSN   0021-8979.
  28. Zhang, Hengfang; Persson, Ingemar; Papamichail, Alexis; Chen, Jr.-Tai; Persson, Per O. Å.; Paskov, Plamen P.; Darakchieva, Vanya (2022-02-01). "On the polarity determination and polarity inversion in nitrogen-polar group III-nitride layers grown on SiC". Journal of Applied Physics. 131 (5). AIP Publishing: 055701. doi:10.1063/5.0074010.
  29. Fan, Shizhao; Yin, Yuhao; Liu, Rong; Zhao, Haiyang; Liu, Zhenghui; Sun, Qian; Yang, Hui (2024-10-08). "Polarity control and crystalline quality improvement of AlN thin films grown on Si(111) substrates by molecular beam epitaxy". Journal of Applied Physics. 136 (14). AIP Publishing: 145301. doi: 10.1063/5.0219167 .
  30. Zhang, Zexuan; Hayashi, Yusuke; Tohei, Tetsuya; Sakai, Akira; Protasenko, Vladimir; Singhal, Jashan; Miyake, Hideto; Xing, Huili Grace; Jena, Debdeep; Cho, YongJin (2022-09-09). "Molecular beam homoepitaxy of N-polar AlN: Enabling role of aluminum-assisted surface cleaning". Science Advances. 8 (36) eabo6408. American Association for the Advancement of Science. doi:10.1126/sciadv.abo6408. PMC   9462693 .
  31. Hickman, Austin Lee; Chaudhuri, Reet; Bader, Samuel James; Nomoto, Kazuki; Li, Lei; Hwang, James C M; Grace Xing, Huili; Jena, Debdeep (2021-04-01). "Next generation electronics on the ultrawide-bandgap aluminum nitride platform". Semiconductor Science and Technology. 36 (4): 044001. Bibcode:2021SeScT..36d4001H. doi: 10.1088/1361-6641/abe5fd . ISSN   0268-1242. S2CID   233936255.
  32. Xu, Runjie Lily; Muñoz Rojo, Miguel; Islam, S. M.; Sood, Aditya; Vareskic, Bozo; Katre, Ankita; Mingo, Natalio; Goodson, Kenneth E.; Xing, Huili Grace; Jena, Debdeep; Pop, Eric (2019-11-14). "Thermal conductivity of crystalline AlN and the influence of atomic-scale defects". Journal of Applied Physics. 126 (18): 185105. arXiv: 1904.00345 . Bibcode:2019JAP...126r5105X. doi:10.1063/1.5097172. ISSN   0021-8979. S2CID   90262793.
  33. Slack, Glen A.; Bartram, S. F. (1975-01-01). "Thermal expansion of some diamondlike crystals". Journal of Applied Physics. 46 (1): 89–98. Bibcode:1975JAP....46...89S. doi: 10.1063/1.321373 . ISSN   0021-8979.
  34. Berger, L. I. (1997). Semiconductor Materials . CRC Press. pp.  123–124. ISBN   978-0-8493-8912-2.
  35. Pradhan, S; Jena, S K; Patnaik, S C; Swain, P K; Majhi, J (2015-02-19). "Wear characteristics of Al-AlN composites produced in-situ by nitrogenation". IOP Conference Series: Materials Science and Engineering. 75 (1) 012034. Bibcode:2015MS&E...75a2034P. doi: 10.1088/1757-899X/75/1/012034 . ISSN   1757-899X. S2CID   137160554.
  36. Chih-ming Lin; Ting-ta Yen; Yun-ju Lai; Felmetsger, V. V.; Hopcroft, M. A.; Kuypers, J. H.; Pisano, A. P. (March 2010). "Temperature-compensated aluminum nitride lamb wave resonators". IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 57 (3): 524–532. Bibcode:2010ITUFF..57..524L. doi:10.1109/TUFFC.2010.1443. PMID   20211766. S2CID   20028149.
  37. Xiong, Chi; Pernice, Wolfram H. P.; Sun, Xiankai; Schuck, Carsten; Fong, King Y.; Tang, Hong X. (2012). "Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics". New Journal of Physics. 14 (9) 095014. arXiv: 1210.0975 . Bibcode:2012NJPh...14i5014X. doi:10.1088/1367-2630/14/9/095014. ISSN   1367-2630. S2CID   118571039.
  38. Mueller, Stephan G.; Bondokov, Robert T.; Morgan, Kenneth E.; Slack, Glen A.; Schujman, Sandra B.; Grandusky, James; Smart, Joseph A.; Schowalter, Leo J. (2009-02-02). "The progress of AlN bulk growth and epitaxy for electronic applications". physica status solidi (a). 206 (6). Wiley-VCH: 1153–1159. doi:10.1002/pssa.200880758.
  39. Avdeev, O. V.; Chemekova, T. Yu.; Helava, H.; Makarov, Y. N.; Mokhov, E. N.; Nagalyuk, S. S.; Ramm, M. G.; Segal, A. S.; Zhmakin, A. I. (2010). "Manufacturing of Bulk AlN Substrates". In Capper, P.; Rudolph, P. (eds.). Crystal Growth Technology: Semiconductors and Dielectrics. Wiley-VCH. pp. 121–133. ISBN   978-3-527-32593-1.
  40. Ide, Takayuki; Komeya, Katsutoshi; Meguro, Takeshi; Tatami, Junichi (1999). "Synthesis of AlN Powder by Carbothermal Reduction–Nitridation of Various Al2O3 Powders with CaF2". Journal of the American Ceramic Society. 82 (11): 2993–2998.
  41. Amano, H; Sawaki, N; Akasaki, I (1986). "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer". Applied Physics Letters. 48 (5): 353–355. Bibcode:1986ApPhL..48..353A. doi:10.1063/1.96549. ISSN   0003-6951.
  42. Bryan, Isaac; Bryan, Zachary; Mita, Seiji; Rice, Anthony; Tweedie, James; Collazo, Ramón; Sitar, Zlatko (2016). "Surface kinetics in AlN growth: A universal model for the control of surface morphology in III-nitrides". Journal of Crystal Growth. 438: 81–89. Bibcode:2016JCrGr.438...81B. doi:10.1016/j.jcrysgro.2015.12.022. ISSN   0022-0248.
  43. Morita, Mizuho; Uesugi, Norihiko; Isogai, Seiji; Tsubouchi, Kazuo; Mikoshiba, Nobuo (1981). "Epitaxial Growth of Aluminum Nitride on Sapphire Using Metalorganic Chemical Vapor Deposition". Japanese Journal of Applied Physics. 20 (1): 17–23. Bibcode:1981JaJAP..20...17M. doi:10.1143/JJAP.20.17.
  44. Koblmüller, G.; Averbeck, R.; Geelhaar, L.; Riechert, H.; Hösler, W.; Pongratz, P. (2003-06-15). "Growth diagram and morphologies of AlN thin films grown by molecular beam epitaxy". Journal of Applied Physics. 93 (12). American Institute of Physics: 9591–9596. Bibcode:2003JAP....93.9591K. doi:10.1063/1.1575929. ISSN   0021-8979.
  45. Faria, F. A.; Nomoto, K; Hu, Z; Rouvimov, S; Xing, H; Jena, D (2015). "Low temperature AlN growth by MBE and its application in HEMTs". Journal of Crystal Growth. 425: 133–137. Bibcode:2015JCrGr.425..133F. doi:10.1016/j.jcrysgro.2015.03.039.
  46. Yamakawa, Tomohiro; Tatami, Junichi; Wakihara, Toru; Komeya, Katsutoshi; Meguro, Takeshi; MacKenzie, Kenneth J. D.; Takagi, Shinichi; Yokouchi, Masahiro (2005-10-04). "Synthesis of AlN Nanopowder from γ-Al2O3 by Reduction-Nitridation in a Mixture of NH3-C3H8" . Journal of the American Ceramic Society. 89 (1): 171–175. doi:10.1111/j.1551-2916.2005.00693.x. ISSN   0002-7820 . Retrieved 2023-06-26.
  47. Lamanna, Leonardo (November 2023). "Recent Progress in Polymeric Flexible Surface Acoustic Wave Devices: Materials, Processing, and Applications". Advanced Materials Technologies. 8 (21) 2300362. doi: 10.1002/admt.202300362 . ISSN   2365-709X.
  48. Tsuruoka, Doug (2014-03-17). "Apple, Samsung Cellphone Filter Orders Lift Avago". Investor's Business Daily.
  49. "ACPF-7001: Agilent Technologies Announces FBAR Filter for U.S. PCS Band Mobile Phones and Data Cards". wirelessZONE. EN-Genius Network Ltd. 2002-05-27. Retrieved 2008-10-18.
  50. Metz, Rachel (November 2013). "A Gestural Interface for Smart Watches". MIT Technology Review. Archived from the original on Nov 2, 2013.
  51. Przybyla, R.; al, et (2014). "3D Ultrasonic Gesture Recognition". International Solid State Circuits Conference. San Francisco. pp. 210–211.
  52. Ahmadi, A.; Hadipour, N. L.; Kamfiroozi, M.; Bagheri, Z. (2012). "Theoretical study of aluminium nitride nanotubes for chemical sensing of formaldehyde". Sensors and Actuators B: Chemical. 161 (1): 1025–1029. Bibcode:2012SeAcB.161.1025A. doi:10.1016/j.snb.2011.12.001.
  53. Ahmadi Peyghan, A.; Omidvar, A.; Hadipour, N. L.; Bagheri, Z.; Kamfiroozi, M. (2012). "Can aluminum nitride nanotubes detect the toxic NH3 molecules?". Physica E. 44 (7–8): 1357–1360. Bibcode:2012PhyE...44.1357A. doi:10.1016/j.physe.2012.02.018.
  54. Taniyasu, Y.; et al. (2006). "An Aluminium Nitride Light-Emitting Diode with a Wavelength of 210 Nanometres" . Nature. 441 (7091): 325–328. Bibcode:2006Natur.441..325T. doi:10.1038/nature04760. PMID   16710416. S2CID   4373542.
  55. Tsao, J. Y.; Chowdhury, S.; Hollis, M. A.; Jena, D.; Johnson, N. M.; Jones, K. A.; Kaplar, R. J.; Rajan, S.; Van de Walle, C. G.; Bellotti, E.; Chua, C. L.; Collazo, R.; Coltrin, M. E.; Cooper, J. A.; Evans, K. R. (2018). "Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges". Advanced Electronic Materials. 4 (1) 1600501. doi: 10.1002/aelm.201600501 . ISSN   2199-160X.
  56. Ross, Lisa (Apr 12, 2024). "What is Aluminum Nitride Ceramic?". Advanced Ceramic Materials. Retrieved Nov 2, 2024.
  57. Ma, Yupu; Wei, Tao (2023). "Embedded Microfluidic Cooling in Aluminum Nitride HTCC Substrate for High-Power Radio Frequency Chip Array". Journal of Thermal Science and Engineering Applications. 15 (10): 101004–101012. doi:10.1115/1.4062400.
  58. Lang, Jing; Xu, Fujun (2024). "Progress in Performance of AlGaN-Based Ultraviolet Light Emitting Diodes". Advanced Electronic Materials. 11 2300840. doi: 10.1002/aelm.202300840 .

Cited sources